134 research outputs found

    Observation of Exceptional Points in Electronic Circuits

    Full text link
    Two damped coupled oscillators have been used to demonstrate the occurrence of exceptional points in a purely classical system. The implementation was achieved with electronic circuits in the kHz-range. The experimental results perfectly match the mathematical predictions at the exceptional point. A discussion about the universal occurrence of exceptional points -- connecting dissipation with spatial orientation -- concludes the paper.Comment: 4 pages, latex, 3 postscript figures, submitted for publicatio

    New records of Chondrichthycians species caught in the Cantabrian Sea (southern Bay of Biscay)

    Get PDF
    Seventeen chondrichthyan species were caught in the Cantabrian Sea (southern Bay of Biscay) during a multidisciplinary survey carried out in the Avile´s canyon system in May 2011. This survey provided the first records of three species (Galeus murinus, Neoraja iberica, and Neoraja caerulea) in these waters, and a further record of Rajella kukujevi. To confirm the identity of these species, the cytochrome c oxidase subunit I (COI) of the specimens was sequenced. Genetic analyses revealed that the DNA sequences of the two Neoraja species were identical in all the specimens analysed. Morphometric analyses, based on 40 characters, showed 3.66% dissimilarity between the two species. The morphometric character that contributed most to this discrepancy was disc width.Versión del editor1,023

    Unfolding of eigenvalue surfaces near a diabolic point due to a complex perturbation

    Full text link
    The paper presents a new theory of unfolding of eigenvalue surfaces of real symmetric and Hermitian matrices due to an arbitrary complex perturbation near a diabolic point. General asymptotic formulae describing deformations of a conical surface for different kinds of perturbing matrices are derived. As a physical application, singularities of the surfaces of refractive indices in crystal optics are studied.Comment: 23 pages, 7 figure

    Fermionic coherent states for pseudo-Hermitian two-level systems

    Full text link
    We introduce creation and annihilation operators of pseudo-Hermitian fermions for two-level systems described by pseudo-Hermitian Hamiltonian with real eigenvalues. This allows the generalization of the fermionic coherent states approach to such systems. Pseudo-fermionic coherent states are constructed as eigenstates of two pseudo-fermion annihilation operators. These coherent states form a bi-normal and bi-overcomplete system, and their evolution governed by the pseudo-Hermitian Hamiltonian is temporally stable. In terms of the introduced pseudo-fermion operators the two-level system' Hamiltonian takes a factorized form similar to that of a harmonic oscillator.Comment: 13 pages (Latex, article class), no figures; v2: some amendments in section 2, seven new refs adde

    Application of Pseudo-Hermitian Quantum Mechanics to a Complex Scattering Potential with Point Interactions

    Full text link
    We present a generalization of the perturbative construction of the metric operator for non-Hermitian Hamiltonians with more than one perturbation parameter. We use this method to study the non-Hermitian scattering Hamiltonian: H=p^2/2m+\zeta_-\delta(x+a)+\zeta_+\delta(x-a), where \zeta_\pm and a are respectively complex and real parameters and \delta(x) is the Dirac delta function. For regions in the space of coupling constants \zeta_\pm where H is quasi-Hermitian and there are no complex bound states or spectral singularities, we construct a (positive-definite) metric operator \eta and the corresponding equivalent Hermitian Hamiltonian h. \eta turns out to be a (perturbatively) bounded operator for the cases that the imaginary part of the coupling constants have opposite sign, \Im(\zeta_+) = -\Im(\zeta_-). This in particular contains the PT-symmetric case: \zeta_+ = \zeta_-^*. We also calculate the energy expectation values for certain Gaussian wave packets to study the nonlocal nature of \rh or equivalently the non-Hermitian nature of \rH. We show that these physical quantities are not directly sensitive to the presence of PT-symmetry.Comment: 22 pages, 4 figure

    Spectral Singularities of a General Point Interaction

    Full text link
    We study the problem of locating spectral singularities of a general complex point interaction with a support at a single point. We also determine the bound states, examine the special cases where the point interaction is P-, T-, and PT-symmetric, and explore the issue of the coalescence of spectral singularities and bound states.Comment: 11 page

    Complex magnetic monopoles, geometric phases and quantum evolution in vicinity of diabolic and exceptional points

    Full text link
    We consider the geometric phase and quantum tunneling in vicinity of diabolic and exceptional points. We show that the geometric phase associated with the degeneracy points is defined by the flux of complex magnetic monopole. In weak-coupling limit the leading contribution to the real part of geometric phase is given by the flux of the Dirac monopole plus quadrupole term, and the expansion for its imaginary part starts with the dipolelike field. For a two-level system governed by the generic non-Hermitian Hamiltonian, we derive a formula to compute the non-adiabatic complex geometric phase by integral over the complex Bloch sphere. We apply our results to to study a two-level dissipative system driven by periodic electromagnetic field and show that in the vicinity of the exceptional point the complex geometric phase behaves as step-like function. Studying tunneling process near and at exceptional point, we find two different regimes: coherent and incoherent. The coherent regime is characterized by the Rabi oscillations and one-sheeted hyperbolic monopole emerges in this region of the parameters. In turn with the incoherent regime the two-sheeted hyperbolic monopole is associated. The exceptional point is the critical point of the system where the topological transition occurs and both of the regimes yield the quadratic dependence on time. We show that the dissipation brings into existence of pulses in the complex geometric phase and the pulses are disappeared when dissipation dies out. Such a strong coupling effect of the environment is beyond of the conventional adiabatic treatment of the Berry phase.Comment: 29 pages, 21 figure

    Stochastic pump effect and geometric phases in dissipative and stochastic systems

    Full text link
    The success of Berry phases in quantum mechanics stimulated the study of similar phenomena in other areas of physics, including the theory of living cell locomotion and motion of patterns in nonlinear media. More recently, geometric phases have been applied to systems operating in a strongly stochastic environment, such as molecular motors. We discuss such geometric effects in purely classical dissipative stochastic systems and their role in the theory of the stochastic pump effect (SPE).Comment: Review. 35 pages. J. Phys. A: Math, Theor. (in press

    Morphological analysis and description of the ovaries of female silky sharks, Carcharhinus falciformis (MĂĽller & Henle, 1839)

    Get PDF
    This work aims to study the female reproductive tract of silky sharks, Carcharhinus falciformis, captured in the South and Equatorial Atlantic Ocean. Samples were collected between January 2008 and March 2010 through oceanic commercial vessels that targeted tuna and swordfish, with a total of 17 females collected. The methodologies followed for analyzing the ovaries of those females included both macroscopic and histological analysis. Macroscopically, it was possible to determine that the ovaries on these sharks is suspended by mesenteries in the anterior section of the body cavity, heavily irrigated by blood vessels, and contains a wide range of oocytes. Ovaries were found in three distinct maturational stages: Stage I (Immature), Stage II (Maturing) and Stage III (Mature). Immature ovaries were small, with widths ranging from 1.0 to 3.1 cm, and had a gelatinous or granulose internal structure; maturing ovaries were slightly larger, ranging in width between 5.2 and 6.0 cm; mature ovaries ranged in width between 6.5 and 7.8 cm, and had a more rounded shape and the presence of large and well developed oocytes. Under microscopic examination, it was observed that the ovaries were covered with simple epithelial tissue during the early development stages and a simple cubic epithelium in the final stages of maturation. During the initial maturation stages the epigonal organ was not differentiated from the ovary. In mature specimens, the ovary showed a simple cubic epithelium and just below this epithelium there was a layer of dense connective tissue and muscle with the presence of vitellogenic oocytes and fat cells. A thin yolk membrane enclosing the oocytes was also evident. Finally, it was possible to distinguish a zona pellucida, separating the oocytes from the follicle wall and a basal lamina between the granular layers and the teak layer.info:eu-repo/semantics/publishedVersio

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    Get PDF
    The shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiver sity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxo nomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world’s known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world’s most biodiverse countries. We further identify collection gaps and summarize future goals that extend be yond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still un equally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the coun try. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora.Fil: Gomes da Silva, Janaina. Jardim Botânico do Rio de Janeiro: Rio de Janeiro, BrasilFil: Filardi, Fabiana L.R. Jardim Botânico do Rio de Janeiro; BrasilFil: Barbosa, María Regina de V. Universidade Federal da Paraíba: Joao Pessoa; BrasilFil: Baumgratz, José Fernando Andrade. Jardim Botânico do Rio de Janeiro; BrasilFil: de Mattos Bicudo, Carlos Eduardo. Instituto de Botânica. Núcleo de Pesquisa em Ecologia; BrasilFil: Cavalcanti, Taciana. Empresa Brasileira de Pesquisa Agropecuária Recursos Genéticos e Biotecnologia; BrasilFil: Coelho, Marcus. Prefeitura Municipal de Campinas; BrasilFil: Ferreira da Costa, Andrea. Federal University of Rio de Janeiro. Museu Nacional. Department of Botany; BrasilFil: Costa, Denise. Instituto de Pesquisas Jardim Botanico do Rio de Janeiro; BrasilFil: Dalcin, Eduardo C. Rio de Janeiro Botanical Garden Research Institute; BrasilFil: Labiak, Paulo. Universidade Federal do Parana; BrasilFil: Cavalcante de Lima, Haroldo. Jardim Botânico do Rio de Janeiro; BrasilFil: Lohmann, Lucia. Universidade de São Paulo; BrasilFil: Maia, Leonor. Universidade Federal de Pernambuco; BrasilFil: Mansano, Vidal de Freitas. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro; Brasil. Jardim Botânico do Rio de Janeiro; BrasilFil: Menezes, Mariângela. Federal University of Rio de Janeiro. Museu Nacional. Department of Botany; BrasilFil: Morim, Marli. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro; BrasilFil: Moura, Carlos Wallace do Nascimento. Universidade Estadual de Feira de Santana. Department of Biological Science; BrasilFil: Lughadha, Eimear NIck. Royal Botanic Gardens; Reino UnidoFil: Peralta, Denilson. Instituto de Pesquisas Ambientais; BrazilFil: Prado, Jefferson. Instituto de Pesquisas Ambientais; BrasilFil: Roque, Nádia. Universidade Federal da Bahia; BrasilFil: Stehmann, Joao. Universidade Federal de Minas Gerais; BrasilFil: da Silva Sylvestre, Lana. Universidade Federal do Rio de Janeiro; BrasilFil: Trierveiler-Pereira, Larissa. Universidade Estadual de Maringá. Departamento de Análises Clínicas e Biomedicina; BrasilFil: Walter, Bruno Machado Teles. EMBRAPA Cenargen Brasília; BrasilFil: Zimbrão, Geraldo. Universidade Federal do Rio de Janeiro; BrasilFil: Forzza, Rafaela C. Jardim Botânico do Rio de Janeiro; BrasilFil: Morales, Matías. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Morón. Facultad de Agronomía y Ciencias Agroalimentarias; Argentin
    • …
    corecore