7 research outputs found

    Large-Scale Spatio-Temporal Patterns of Mediterranean Cephalopod Diversity

    Get PDF
    Species diversity is widely recognized as an important trait of ecosystems’ functioning and resilience. Understanding the causes of diversity patterns and their interaction with the environmental conditions is essential in order to effectively assess and preserve existing diversity. While diversity patterns of most recurrent groups such as fish are commonly studied, other important taxa such as cephalopods have received less attention. In this work we present spatio-temporal trends of cephalopod diversity across the entire Mediterranean Sea during the last 19 years, analysing data from the annual bottom trawl survey MEDITS conducted by 5 different Mediterranean countries using standardized gears and sampling protocols. The influence of local and regional environmental variability in different Mediterranean regions is analysed applying generalized additive models, using species richness and the Shannon Wiener index as diversity descriptors. While the western basin showed a high diversity, our analyses do not support a steady eastward decrease of diversity as proposed in some previous studies. Instead, high Shannon diversity was also found in the Adriatic and Aegean Seas, and high species richness in the eastern Ionian Sea. Overall diversity did not show any consistent trend over the last two decades. Except in the Adriatic Sea, diversity showed a hump-shaped trend with depth in all regions, being highest between 200–400 m depth. Our results indicate that high Chlorophyll a concentrations and warmer temperatures seem to enhance species diversity, and the influence of these parameters is stronger for richness than for Shannon diversityVersión del editor4,411

    Sensitivity analysis, molecular systematics and natural history evolution of Scathophagidae (Diptera: Cyclorrhapha: Calyptratae)

    Full text link
    The 60 000 described species of Cyclorrhapha are characterized by an unusual diversity in larval life-history traits, which range from saprophagy over phytophagy to parasitism and predation. However, the direction of evolutionary change between the different modes remains unclear. Here, we use the Scathophagidae (Diptera) for reconstructing the direction of change in this relatively small family ( 250 spp.) whose larval habits mirror the diversity in natural history found in Cyclorrhapha. We subjected a molecular data set for 63 species (22 genera) and DNA sequences from seven genes (12S, 16S, Cytb, COI, 28S, Ef1-alfa, Pol II) to an extensive sensitivity analysis and compare the performance of three different alignment strategies (manual, Clustal, POY). We find that the default Clustal alignment performs worst as judged by character incongruence, topological congruence and branch support. For this alignment, scoring indels as a fifth character state worsens character incongruence and topological congruence. However, manual alignment and direct optimization perform similarly well and yield near-identical trees, although branch support is lower for the direct-optimization trees. All three alignment techniques favor the upweighting of transversion. We furthermore confirm the independence of the concepts ‘‘node support’’ and ‘‘node stability’’ by documenting several cases of poorly supported nodes being very stable and cases of well supported nodes being unstable. We confirm the monophyly of the Scathophagidae, its two constituent subfamilies, and most genera. We demonstrate that phytophagy in the form of leaf mining is the ancestral larval feeding habit for Scathophagidae. From phytophagy, two shifts to saprophagy and one shift to predation has occurred while a second origin of predation is from a saprophagous ancestor
    corecore