4,323 research outputs found

    Characterisation of hydraulic head changes and aquifer properties in the London Basin using Persistent Scatterer Interferometry ground motion data

    Get PDF
    In this paper, Persistent Scatterer Interferometry was applied to ERS-1/2 and ENVISAT satellite data covering 1992–2000 and 2002–2010 respectively, to analyse the relationship between ground motion and hydraulic head changes in the London Basin, United Kingdom. The integration of observed groundwater levels provided by the Environment Agency and satellite-derived displacement time series allowed the estimation of the spatio-temporal variations of the Chalk aquifer storage coefficient and compressibility over an area of ∼1360 km2. The average storage coefficient of the aquifer reaches values of 1 × 10−3 and the estimated average aquifer compressibility is 7.7 × 10−10 Pa−1 and 1.2 × 10−9 Pa−1 for the periods 1992–2000 and 2002–2010, respectively. Derived storage coefficient values appear to be correlated with the hydrogeological setting, where confined by the London Clay the storage coefficient is typically an order of magnitude lower than where the chalk is overlain by the Lambeth Group. PSI-derived storage coefficient estimates agree with the values obtained from pumping tests in the same area. A simplified one-dimensional model is applied to simulate the ground motion response to hydraulic heads changes at nine piezometers. The comparison between simulated and satellite-observed ground motion changes reveals good agreement, with errors ranging between 1.4 and 6.9 mm, and being 3.2 mm on average

    Dynamics of Rydberg States of Nitric Oxide Probed By Two-Color Resonant Four-Wave Mixing Spectroscopy

    Get PDF
    Two-color resonant four-wave mixing (TC-RFWM) spectroscopy has been used to probe highly excited v = 0 and v = 1 Rydberg states of nitric oxide. Transitions to n = 16-30, v = 0, Rydberg states, and the 8p, 9p, 7f, 8f, 8s, and 9s, v = 1 Rydberg states from the A (2)Sigma(+), v\u27 = 0 and 1 states have been recorded. The decay rate of the 8p and 9p, v = 1 states has been extracted from the observed line profiles by using a recently developed model for the excitation of quasibound resonances in TC-RFWM spectroscopy. Transitions from the A (2)Sigma(+), v\u27 = 1 state to the X (2)Pi(3/2), v = 10 state have also been observed, allowing an absolute calibration of the TC-RFWM signal intensity. This calibration is used to determine an excited-state absorption cross section for the 9p, v = 1 Rydberg state. (C) 1998 American Institute of Physics. [S0021-9606(98)01625-0]

    Line Intensities and Molecular Opacities of the FeH F4Δi−X4ΔiF^4\Delta_i-X^4\Delta_i Transition

    Full text link
    We calculate new line lists and opacities for the F4Δi−X4ΔiF^4\Delta_i-X^4\Delta_i transition of FeH. The 0-0 band of this transition is responsible for the Wing-Ford band seen in M-type stars, sunspots and brown dwarfs. The new Einstein A values for each line are based on a high level ab initio calculation of the electronic transition dipole moment. The necessary rotational line strength factors (H\"onl-London factors) are derived for both the Hund's case (a) and (b) coupling limits. A new set of spectroscopic constants were derived from the existing FeH term values for v=0, 1 and 2 levels of the XX and FF states. Using these constants extrapolated term values were generated for v=3 and 4 and for JJ values up to 50.5. The line lists (including Einstein A values) for the 25 vibrational bands with v≤\leq4 were generated using a merged list of experimental and extrapolated term values. The FeH line lists were use to compute the molecular opacities for a range of temperatures and pressures encountered in L and M dwarf atmospheres. Good agreement was found between the computed and observed spectral energy distribution of the L5 dwarf 2MASS-1507.Comment: 52 pages, 3 figures, many tables, accepted for publication in the Astrophysical Journal Supplement

    Challenging and redesigning a new model to explain intention to leave nursing

    Get PDF
    Brendan McCormack - ORCID 0000-0001-8525-8905 https://orcid.org/0000-0001-8525-8905Replaced AM with VoR 2020-06-25Background It is important to have a full and detailed understanding of the factors that influence intention to leave nursing. It has been shown to be the best predictor of actual turnover, and turnover has a significant financial impact and also on the provision of care.Aims The aim is to examine the impact of predictive work environment factors on nurses’ intention to leave their position and to explore contributing factors.Methods Cross sectional survey using a convenience sample (n=605) of Finnish nurses drawn from five clinical settings. The Nursing Context Index, an internationally used and psychometrically validated tool was used to measure workplace practice environment, work stress, job satisfaction and intention to leave. A response rate of 29.4% was achieved, exceeding power calculation estimates.Results Personal satisfaction and satisfaction with profession and resources, and organisational commitment were significantly related to intention to leave. Younger nurses reported higher levels of intention to leave and there was variability among clinical specialties. Measures of stress and practice environment had no significant relationship with Intention to leave.Discussion This study provides a new theoretical model for understanding intention to leave. Having a better understanding of the factors that may help reduce intention to leave allow for targeted interventions to be developed; and implemented. This would help reduce the personal and financial implications associated with turnover.Implications for practice, policy, management and education The findings have significant implications for all aspects of nursing. Educators need to prepare new nursing staff for the working environment; policy makers must ensure that nursing satisfaction is promoted to strengthen organisational commitment and nurse managers and leaders respond accordingly in implementing effective interventions.https://doi.org/10.1111/scs.1288435pubpub

    Effects of model chemistry and data biases on stratospheric ozone assimilation

    Get PDF
    The innovations or observation minus forecast (O–F) residuals produced by a data assimilation system provide a convenient metric of evaluating global analyses. In this study, O–F statistics from the Global Ozone Assimilation Testing System (GOATS) are used to examine how ozone assimilation products and their associated O–F statistics depend on input data biases and ozone photochemistry parameterizations (OPP). All the GOATS results shown are based on a 6-h forecast and analysis cycle using observations from SBUV/2 (Solar Backscatter UltraViolet instrument-2) during September–October 2002. Results show that zonal mean ozone analyses are more independent of observation biases and drifts when using an OPP, while the mean ozone O–Fs are more sensitive to observation drifts when using an OPP. In addition, SD O–Fs (standard deviations) are reduced in the upper stratosphere when using an OPP due to a reduction of forecast model noise and to increased covariance between the forecast model and the observations. Experiments that changed the OPP reference state to match the observations by using an "adaptive" OPP scheme reduced the mean ozone O–Fs at the expense of zonal mean ozone analyses being more susceptible to data biases and drifts. Additional experiments showed that the upper boundary of the ozone DAS can affect the quality of the ozone analysis and therefore should be placed well above (at least a scale height) the region of interest

    Assessment of Surfactant Protein A (SP-A) dependent agglutination

    Get PDF
    Background: Monomers of the collectin surfactant associated protein-A (SP-A) are arranged in trimers and higher oligomers. The state of oligomerization differs between individuals and likely affects SP-A's functional properties. SP-A can form aggregates together with other SP-A molecules. Here we report and assess a test system for the aggregate forming properties of SP-A in serum and broncho-alveolar lavage samples. Methods: Anti-SP-A antibodies fixed to latex beads bound SP-A at its N-terminal end and allowed the interaction with other SP-A molecules in a given sample by their C-terminal carbohydrate recognition domain (CRD) to agglutinate the beads to aggregates, which were quantified by light microscopy. Results: SP-A aggregation was dependent on its concentration, the presence of calcium, and was dose-dependently inhibited by mannose. Unaffected by the presence of SP-D no aggregation was observed in absence of SP-A. The more complex the oligomeric structure of SP-A present in a particular sample, the better was its capability to induce aggregation at a given total concentration of SP-A. SP-A in serum agglutinated independently of the pulmonary disease; in contrast SP-A in lung lavage fluid was clearly inferior in patients with chronic bronchitis and particularly with cystic fibrosis compared to controls. Conclusions: The functional status of SP-A with respect to its aggregating properties in serum and lavage samples can be easily assessed. SP-A in lung lavage fluid in patients with severe neutrophilic bronchitis was inferior

    Fludarabine as a cost-effective adjuvant to enhance engraftment of human normal and malignant hematopoiesis in immunodeficient mice

    Get PDF
    There is still an unmet need for xenotransplantation models that efficiently recapitulate normal and malignant human hematopoiesis. Indeed, there are a number of strategies to generate humanized mice and specific protocols, including techniques to optimize the cytokine environment of recipient mice and drug alternatives or complementary to the standard conditioning regimens, that can be significantly modulated. Unfortunately, the high costs related to the use of sophisticated mouse models may limit the application of these models to studies that require an extensive experimental design. Here, using an affordable and convenient method, we demonstrate that the administration of fludarabine (FludaraTM) promotes the extensive and rapid engraftment of human normal hematopoiesis in immunodeficient mice. Quantification of human CD45+ cells in bone marrow revealed approximately a 102-fold increase in mice conditioned with irradiation plus fludarabine. Engrafted cells in the bone marrow included hematopoietic stem cells, as well as myeloid and lymphoid cells. Moreover, this model proved to be sufficient for robust reconstitution of malignant myeloid hematopoiesis, permitting primary acute myeloid leukemia cells to engraft as early as 8 weeks after the transplant. Overall, these results present a novel and affordable model for engraftment of human normal and malignant hematopoiesis in immunodeficient mice

    On the importance of middle-atmosphere observations on ionospheric dynamics using WACCM-X and SAMI3

    Get PDF
    Recent advances in atmospheric observations and modeling have enabled the investigation of thermosphere–ionosphere interactions as a whole-atmosphere problem. This study examines how dynamical variability in the middle atmosphere (MA) affects intra-day changes in the thermosphere and ionosphere. Specifically, this study investigates ionosphere–thermosphere interactions during different time periods of January 2013 using the Specified Dynamics Whole Atmosphere Community Climate Model, eXtended version (SD-WACCM-X), coupled to the Naval Research Laboratory (NRL) ionosphere of the Sami3 is Another Model of the Ionosphere (SAMI3) model. To represent the weather of the day, the coupled thermosphere–ionosphere system is nudged below 90 km toward the atmospheric specifications provided by the Navy Global Environmental Model for High-Altitude (NAVGEM-HA). Hindcast simulations during January 2013 are carried out with the full dataset of observations normally assimilated by NAVGEM-HA and with a degraded dataset where observations above 40 km are not assimilated. Ionospheric regions with statistically significant changes are identified using key ionospheric properties, including the electron density, peak electron density, and height of the peak electron density. Ionospheric changes show a spatial structure that illustrates the impact of two different types of coupling between the thermosphere and the ionosphere: variability induced by wind-dynamo coupling through electric conductivity and ion-neutral interactions in the upper thermosphere. The two simulations presented in this study show that changing the state of the MA affects ionosphere–thermosphere coupling through changes in the behavior and amplitude of non-migrating tides, resulting in improved key ionospheric specifications.</p
    • …
    corecore