247 research outputs found

    Coloured peak algebras and Hopf algebras

    Get PDF
    For GG a finite abelian group, we study the properties of general equivalence relations on G_n=G^n\rtimes \SG_n, the wreath product of GG with the symmetric group \SG_n, also known as the GG-coloured symmetric group. We show that under certain conditions, some equivalence relations give rise to subalgebras of \k G_n as well as graded connected Hopf subalgebras of \bigoplus_{n\ge o} \k G_n. In particular we construct a GG-coloured peak subalgebra of the Mantaci-Reutenauer algebra (or GG-coloured descent algebra). We show that the direct sum of the GG-coloured peak algebras is a Hopf algebra. We also have similar results for a GG-colouring of the Loday-Ronco Hopf algebras of planar binary trees. For many of the equivalence relations under study, we obtain a functor from the category of finite abelian groups to the category of graded connected Hopf algebras. We end our investigation by describing a Hopf endomorphism of the GG-coloured descent Hopf algebra whose image is the GG-coloured peak Hopf algebra. We outline a theory of combinatorial GG-coloured Hopf algebra for which the GG-coloured quasi-symmetric Hopf algebra and the graded dual to the GG-coloured peak Hopf algebra are central objects.Comment: 26 pages latex2

    Combinatorial Hopf algebras and Towers of Algebras

    Get PDF
    Bergeron and Li have introduced a set of axioms which guarantee that the Grothendieck groups of a tower of algebras ⨁nβ‰₯0An\bigoplus_{n\ge0}A_n can be endowed with the structure of graded dual Hopf algebras. Hivert and Nzeutzhap, and independently Lam and Shimozono constructed dual graded graphs from primitive elements in Hopf algebras. In this paper we apply the composition of these constructions to towers of algebras. We show that if a tower ⨁nβ‰₯0An\bigoplus_{n\ge0}A_n gives rise to graded dual Hopf algebras then we must have dim⁑(An)=rnn!\dim(A_n)=r^nn! where r=dim⁑(A1)r = \dim(A_1).Comment: 7 page

    Overview of NASA Technology Development for In-Situ Resource Utilization (ISRU)

    Get PDF
    In-Situ Resource Utilization (ISRU) encompasses a broad range of systems that enable the production and use of extraterrestrial resources in support of future exploration missions. It has the potential to greatly reduce the dependency on resources transported from Earth (e.g., propellants, life support consumables), thereby significantly improving the ability to conduct future missions. Recognizing the critical importance of ISRU for the future, NASA is currently conducting technology development projects in two of its four mission directorates. The Advanced Exploration Systems Division in the Agency's Human Exploration and Operations Mission Directorate has initiated a new project for ISRU Technology focused on component, subsystem, and system maturation in the areas of water volatiles resource acquisition, and water volatiles and atmospheric processing into propellants and other consumable products. The Space Technology Mission Directorate is supporting development of ISRU component technologies in the areas of Mars atmosphere acquisition, including dust management, and oxygen production from Mars atmosphere for propellant and life support consumables. Together, these two coordinated projects are working towards a common goal of demonstrating ISRU technology and systems in preparation for future flight applications

    Effect of Cyclooxygenase(COX)-1 and COX-2 inhibition on furosemide-induced renal responses and isoform immunolocalization in the healthy cat kidney

    Get PDF
    BACKGROUND: The role of cyclooxygenase(COX)-1 and COX-2 in the saluretic and renin-angiotensin responses to loop diuretics in the cat is unknown. We propose in vivo characterisation of isoform roles in a furosemide model by administering non-steroidal anti-inflammatory drugs (NSAIDs) with differing selectivity profiles: robenacoxib (COX-2 selective) and ketoprofen (COX-1 selective). RESULTS: In this four period crossover study, we compared the effect of four treatments: placebo, robenacoxib once or twice daily and ketoprofen once daily concomitantly with furosemide in seven healthy cats. For each period, urine and blood samples were collected at baseline and within 48Β h of treatment starting. Plasma renin activity (PRA), plasma and urinary aldosterone concentrations, glomerular filtration rate (GFR) and 24Β h urinary volumes, electrolytes and eicosanoids (PGE(2), 6-keto-PGF1(Ξ±,) TxB(2)), renal injury biomarker excretions [N-acetyl-beta-D-glucosaminidase (NAG) and Gamma-Glutamyltransferase] were measured. Urine volume (24Β h) and urinary sodium, chloride and calcium excretions increased from baseline with all treatments. Plasma creatinine increased with all treatments except placebo, whereas GFR was significantly decreased from baseline only with ketoprofen. PRA increased significantly with placebo and once daily robenacoxib and the increase was significantly higher with placebo compared to ketoprofen (10.5 ± 4.4 vs 4.9 ± 5.0Β ngΒ ml(βˆ’1) h(βˆ’1)). Urinary aldosterone excretion increased with all treatments but this increase was inhibited by 75Β % with ketoprofen and 65Β % with once daily robenacoxib compared to placebo. Urinary PGE(2) excretion decreased with all treatments and excretion was significantly lower with ketoprofen compared to placebo. Urinary TxB(2) excretion was significantly increased from baseline only with placebo. NAG increased from baseline with all treatments. Immunohistochemistry on post-mortem renal specimens, obtained from a different group of cats that died naturally of non-renal causes, suggested constitutive COX-1 and COX-2 co-localization in many renal structures including the macula densa (MD). CONCLUSIONS: These data suggest that both COX-1 and COX-2 could generate the signal from the MD to the renin secreting cells in cats exposed to furosemide. Co-localization of COX isoenzymes in MD cells supports the functional data reported here. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12917-015-0598-z) contains supplementary material, which is available to authorized users

    Direct Observation of Dimerization between Different CREB1 Isoforms in a Living Cell

    Get PDF
    Cyclic AMP-responsive element binding protein 1 (CREB1) plays multiple functions as a transcription factor in gene regulation. CREB1 proteins are also known to be expressed in several spliced isoforms that act as transcriptional activators or repressors. The activator isoforms, possessing the functional domains for kinase induction and for interaction with other transcriptional regulators, act as transcriptional activators. On the other hand, some isoforms, lacking those functional domains, are reported to be repressors that make heterodimers with activator isoforms. The complex and ingenious function for CREB1 arises in part from the variation in their spliced isoforms, which allows them to interact with each other. To date, however, the dimerization between the activator and repressor isoforms has not yet been proved directly in living cells. In this study, we applied fluorescence cross-correlation spectroscopy (FCCS) to demonstrate direct observation of dimerization between CREB1 activator and repressor. The FCCS is a well established spectroscopic method to determine the interaction between the different fluorescent molecules in the aqueous condition. Using differently labeled CREB1 isoforms, we successfully observed the interaction of CREB1 activator and repressor via dimerization in the nuclei of cultured cells. As a result, we confirmed the formation of heterodimer between CREB1 activator and repressor isoforms in living cells

    X-ray radiation from ions with K-shell vacancies

    Get PDF
    Abstract New types of space resolved X-ray spectra produced in light matter experiments with high intensity lasers have been investigated experimentally and theoretically. This type of spectra is characterised by the disappearance of distinct resonance line emission and the appearance of very broad emission structures due to the dielectronic satellite transitions associated to the resonance lines. Atomic data calculations have shown, that rather exotic states with K-shell vacancies are involved. For quantitative spectra interpretation we developed a model for dielectronic satellite accumulation (DSA-model) in cold dense optically thick plasmas which are tested by rigorous comparison with space resolved spectra from ns-lasers. In experiments with laser intensities up to 10 19 W/cm 2 focused into nitrogen gas targets, hollow ion configurations are observed by means of soft X-ray spectroscopy. It is shown that transitions in hollow ions can be used for plasma diagnostic. The determination of the electron temperature in the long lasting recombining regime is demonstrated. In Light-matter interaction experiments with extremely high contrast (up to 10 10 ) short pulse (400 fs) lasers electron densities of n e β‰ˆ3Γ—10 23 cm βˆ’3 at temperatures between kT e =200–300 eV have been determined by means of spectral simulations developed previously for ns-laser produced plasmas. Expansion velocities are determined analysing asymmetric optically thick line emission. Further, the results are checked by observing the spectral windows involving the region about the He Ξ± -line and the region from the He Ξ² -line to the He-like continuum. Finally, plasmas of solid density are characteristic in experiments with heavy ion beams heating massive targets. We report the first spectroscopic investigations in plasmas of this type with results on solid neon heated by Ar-ions. A spectroscopic method for the determination of the electron temperature in extreme optically thick plasmas is developed

    Functional Importance of the DNA Binding Activity of Candida albicans Czf1p

    Get PDF
    The human opportunistic pathogen Candida albicans undergoes a reversible morphological transition between the yeast and hyphal states in response to a variety of signals. One such environmental trigger is growth within a semisolid matrix such as agar medium. This growth condition is of interest because it may mimic the growth of C. albicans in contact with host tissue during infection. During growth within a semisolid matrix, hyphal growth is positively regulated by the transcriptional regulator Czf1p and negatively by a second key transcriptional regulator, Efg1p. Genetic studies indicate that Czf1p, a member of the zinc-cluster family of transcriptional regulators, exerts its function by opposing the inhibitory influence of Efg1p on matrix-induced filamentous growth. We examined the importance of the two known activities of Czf1p, DNA-binding and interaction with Efg1p. We found that the two activities were separable by mutation allowing us to demonstrate that the DNA-binding activity of Czf1p was essential for its role as a positive regulator of morphogenesis. Surprisingly, however, interactions with Efg1p appeared to be largely dispensable. Our studies provide the first evidence of a key role for the DNA-binding activity of Czf1p in the morphological yeast-to-hyphal transition triggered by matrix-embedded growth

    The Functions of Mediator in Candida albicans Support a Role in Shaping Species-Specific Gene Expression

    Get PDF
    The Mediator complex is an essential co-regulator of RNA polymerase II that is conserved throughout eukaryotes. Here we present the first study of Mediator in the pathogenic fungus Candida albicans. We focused on the Middle domain subunit Med31, the Head domain subunit Med20, and Srb9/Med13 from the Kinase domain. The C. albicans Mediator shares some roles with model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, such as functions in the response to certain stresses and the role of Med31 in the expression of genes regulated by the activator Ace2. The C. albicans Mediator also has additional roles in the transcription of genes associated with virulence, for example genes related to morphogenesis and gene families enriched in pathogens, such as the ALS adhesins. Consistently, Med31, Med20, and Srb9/Med13 contribute to key virulence attributes of C. albicans, filamentation, and biofilm formation; and ALS1 is a biologically relevant target of Med31 for development of biofilms. Furthermore, Med31 affects virulence of C. albicans in the worm infection model. We present evidence that the roles of Med31 and Srb9/Med13 in the expression of the genes encoding cell wall adhesins are different between S. cerevisiae and C. albicans: they are repressors of the FLO genes in S. cerevisiae and are activators of the ALS genes in C. albicans. This suggests that Mediator subunits regulate adhesion in a distinct manner between these two distantly related fungal species
    • …
    corecore