8,884 research outputs found
State of the Art of Laser Hardening and Cladding
In this paper an overview is given about laser surface modification processes, which are developed especially with the aim of hardness improvement for an enhanced fatigue and wear behaviour. The processes can be divided into such with and without filler material and in solid-state and melting processes. Actual work on shock hardening, transformation hardening, remelting, alloying and cladding is reviewed, where the main focus was on scientific work from the 21st century
Optical characteristics of Nd:YAG optics and distortions at high power
The intensity profile and beam caustics of a fiber coupled high power Nd:YAG laser beam through a lens system are studied. The thermal lensing effect and its influence on the beam profile and focal position are discussed. Asymmetry of the intensity profile in planes above and below the focal plane is demonstrated. Also the influence of small pollutions on the protective window is explained. Three different methods are used to measure the occurrence\ud
of thermal lensing and quantify these effects
Competition between Spin-Orbit Interaction and Zeeman Coupling in Rashba 2DEGs
We investigate systematically how the interplay between Rashba spin-orbit
interaction and Zeeman coupling affects the electron transport and the spin
dynamics in InGaAs-based 2D electron gases. From the quantitative analysis of
the magnetoconductance, measured in the presence of an in-plane magnetic field,
we conclude that this interplay results in a spin-induced breaking of time
reversal symmetry and in an enhancement of the spin relaxation time. Both
effects, due to a partial alignment of the electron spin along the applied
magnetic field, are found to be in excellent agreement with recent theoretical
predictions.Comment: 4 figures and 4 page
Unraveling the senses of Phytophthora; leads to novel control strategies?
Oomycetes cause devastating diseases on plants and animals. They cause major yield losses in many crop plants and their control heavily depends on agrochemicals. This is certainly true for the potato late blight pathogen Phytophthora infestans. Strong concerns about adverse effects of agrochemicals on food safety and environment are incentives for the development of novel, environmental friendly control strategies preferably based on natural products. Cyclic lipopeptides (CLPs) were recently discovered as a new class of natural compounds with strong activities against oomycetes including Phytophthora. CLPs lyse zoospores, inhibit mycelial growth and effectively reduce late blight disease. In order to unravel how Phytophthora senses CLPs and other environmental signals we follow two approaches. On the one hand, we monitor genome wide changes in gene expression induced by CLPs with the aim to identify the cellular pathways targeted by CLPs. On the other hand, we analyse components of ubiquitous signal transduction pathways with the aim to identify features that are unique for Phytophthora or oomycetes and, hence, could be suitable targets for novel anti-oomycete agents. Mining and comparing whole genome sequences have revealed that Phytophthora harbours many novel phospholipid modifying enzymes, unique for oomycetes. They have aberrant combinations of catalytic and regulatory domains occasionally combined with transmembrane domains. The latter resemble receptors that might be activated by extracellular ligands. Phospholipids, the substrates of these enzymes, are structural membrane components that also function in signalling. Together these findings open new avenues of research aimed at target-discovery in oomycetes
Forming the Moon from terrestrial silicate-rich material
Recent high-precision measurements of the isotopic composition of lunar rocks
demonstrate that the bulk silicate Earth and the Moon show an unexpectedly high
degree of similarity. This is inconsistent with one of the primary results of
classic dynamical simulations of the widely accepted giant impact model for the
formation of the Moon, namely that most of the mass of the Moon originates from
the impactor, not Earth.
Resolution of this discrepancy without changing the main premises of the
giant impact model requires total isotopic homogenisation of Earth and impactor
material after the impact for a wide range of elements including O, Si, K, Ti,
Nd and W. Even if this process could explain the O isotope similarity, it is
unlikely to work for the much heavier, refractory elements. Given the
increasing uncertainty surrounding the giant impact model in light of these
geochemical data, alternative hypotheses for lunar formation should be
explored. In this paper, we revisit the hypothesis that the Moon was formed
directly from terrestrial mantle material. We show that the dynamics of this
scenario requires a large amount of energy, almost instantaneously generated
additional energy. The only known source for this additional energy is nuclear
fission. We show that it is feasible to form the Moon through the ejection of
terrestrial silicate material triggered by a nuclear explosion at Earths
core-mantle boundary (CMB), causing a shock wave propagating through the Earth.
Hydrodynamic modelling of this scenario shows that a shock wave created by
rapidly expanding plasma resulting from the explosion disrupts and expels
overlying mantle and crust material.Comment: 26 pages, 5 figures, 1 tabl
Collision-induced conformational changes in glycine
We present quantum dynamical calculations on the conformational changes of glycine in collisions with the He, Ne, and Ar rare-gas atoms. For two conformer interconversion processes (III-->I and IV-->I), we find that the probability of interconversion is dependent on several factors, including the energy of the collision, the angle at which the colliding atom approaches the glycine molecule, and the strength of the glycine-atom interaction. Furthermore, we show that attractive interactions between the colliding atom and the glycine molecule catalyze conformer interconversion at low collision energies. In previous infrared spectroscopy studies of glycine trapped in rare-gas matrices and helium clusters, conformer III has been consistently observed, but conformer IV has yet to be conclusively detected. Because of the calculated thermodynamic stability of conformer IV, its elusiveness has been attributed to the IV-->I conformer interconversion process. However, our calculations present little indication that IV-->I interconversion occurs more readily than III-->I interconversion. Although we cannot determine whether conformer IV interconverts during experimental Ne- and Ar-matrix depositions, our evidence suggests that the conformer should be present in helium droplets. Anharmonic vibrational frequency calculations illustrate that previous efforts to detect conformer IV may have been hindered by the overlap of its IR-absorption bands with those of other conformers. We propose that the redshifted symmetric –CH2 stretch of conformer IV provides a means for its conclusive experimental detection
Laser radiation pressure slowing of a molecular beam
There is substantial interest in producing samples of ultracold molecules for
possible applications in quantum computation, quantum simulation of condensed
matter systems, precision measurements, controlled chemistry, and high
precision spectroscopy. A crucial step to obtaining large samples of ultracold,
trapped molecules is developing a means to bridge the gap between typical
molecular source velocities (~150-600 m/s) and velocities for which trap
loading or confinement is possible (~5-20 m/s). Here we show deceleration of a
beam of neutral strontium monofluoride (SrF) molecules using radiative force.
Under certain conditions, the deceleration results in a substantial flux of
molecules with velocities <50 m/s. The observed slowing, from ~140 m/s,
corresponds to scattering ~10000 photons. We also observe longitudinal velocity
compression under different conditions. Combined with molecular laser cooling
techniques, this lays the groundwork to create slow and cold molecular beams
suitable for trap loading.Comment: 7 pages, 7 figures. Supplementary material updated
A versatile electrostatic trap
A four electrode electrostatic trap geometry is demonstrated that can be used
to combine a dipole, quadrupole and hexapole field. A cold packet of 15ND3
molecules is confined in both a purely quadrupolar and hexapolar trapping field
and additionally, a dipole field is added to a hexapole field to create either
a double-well or a donut-shaped trapping field. The profile of the 15ND3 packet
in each of these four trapping potentials is measured, and the dependence of
the well-separation and barrier height of the double-well and donut potential
on the hexapole and dipole term are discussed.Comment: submitted to pra; 7 pages, 9 figure
Probing molecular dynamics at the nanoscale via an individual paramagnetic center
Understanding the dynamics of molecules adsorbed to surfaces or confined to
small volumes is a matter of increasing scientific and technological
importance. Here, we demonstrate a pulse protocol using individual paramagnetic
nitrogen vacancy (NV) centers in diamond to observe the time evolution of 1H
spins from organic molecules located a few nanometers from the diamond surface.
The protocol records temporal correlations among the interacting 1H spins, and
thus is sensitive to the local system dynamics via its impact on the nuclear
spin relaxation and interaction with the NV. We are able to gather information
on the nanoscale rotational and translational diffusion dynamics by carefully
analyzing the time dependence of the NMR signal. Applying this technique to
various liquid and solid samples, we find evidence that liquid samples form a
semi-solid layer of 1.5 nm thickness on the surface of diamond, where
translational diffusion is suppressed while rotational diffusion remains
present. Extensions of the present technique could be adapted to highlight the
chemical composition of molecules tethered to the diamond surface or to
investigate thermally or chemically activated dynamical processes such as
molecular folding
- …