8 research outputs found

    Development of a Stable TiO 2

    Get PDF
    A convenient and low-cost approach for the elaboration of a stable superhydrophobic coating is reported, involving the use of TiO2 nanoparticles via the spray coating method. This method can be used for preparing self-cleaning superhydrophobic coatings on large areas for different kinds of substrates. The synergistic effect of the micro/nanobinary scale roughness was produced by a multilayer RTV SR/TiO2 composite. The influence of the nanofiller concentration in a specific frequency range (40 Hz to 2 MHz) on the dielectric behavior was analyzed as well. It was found that the real relative permittivity (Δrâ€Č) increases as the nanofiller concentration increases. Superhydrophobic behavior is analyzed by contact angle measurements, scanning electron microscopy (SEM), and profilometer. The stability of the developed coating also has been evaluated in terms of immersion in various aqueous solutions, heating, adhesion, and exposure to UV irradiation, and the results showed good stability against these factors. The coating retained its superhydrophobicity after several days of immersion in solutions of different pH levels (2, 4, 6, and 12) and different conductivities. In addition, they also exhibited exceptional stability against UV radiation and heating, as well as good mechanical stability

    Variation de la tolérance à la salinité chez l'orge pendant la germination et la croissance des plantes

    Get PDF
    L’effet du traitement salin sur la germination et la croissance des plantules a Ă©tĂ© Ă©tudiĂ© sur 9 gĂ©notypes d’orge (5 cultivars locaux et 4 variĂ©tĂ©s sĂ©lectionnĂ©es). Les gĂ©notypes ont Ă©tĂ© comparĂ©s pour plusieurs caractĂšres Ă  des concentrations diffĂ©rentes de NaCl (0, 100 mM, 150 mM et 200 Mm) et des concentrations diffĂ©rentes de l’eau de mer (0%, 20%, 30% et 40%). Les rĂ©sultats montrent l’existence d’une variabilitĂ© pour la tolĂ©rance Ă  la salinitĂ© au stade de la germination et au stade de la croissance des plantules. L’interaction (gĂ©notypes x traitements) est significative pour la longueur de la racine et hautement significative pour le poids sec des racines. Certains cultivars locaux apparaissent plus tolĂ©rants que les autres gĂ©notypes testĂ©s, surtout au stade de la germination des graines. Une absence de corrĂ©lation a Ă©tĂ© observĂ©e pour la tolĂ©rance Ă  la salinitĂ© entre le stade de la germination et le stade de la croissance des plantules

    Is salinity the main ecologic factor that shapes the distribution of two endemic Mediterranean plant species of the genus Gypsophila?

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11104-014-2218-2Aims Responses to salt stress of two Gypsophila species that share territory, but with different ecological optima and distribution ranges, were analysed. G. struthium is a regionally dominant Iberian endemic gypsophyte, whereas G. tomentosa is a narrow endemic reported as halophyte. Theworking hypothesis is that salt tolerance shapes the presence of these species in their specific habitats. Methods Taking a multidisciplinary approach, we assessed the soil characteristics and vegetation structure at the sampling site, seed germination and seedling development, growth and flowering, synthesis of proline and cation accumulation under artificial conditions of increasing salt stress and effect of PEG on germination and seedling development. Results Soil salinity was low at the all sampling points where the two species grow, but moisture was higher in the area of G. tomentosa. Differences were found in the species salt and drought tolerance. The different parameters tested did not show a clear pattern indicating the main role of salt tolerance in plant distribution. Conclusions G. tomentosa cannot be considered a true halophyte as previously reported because it is unable to complete its life cycle under salinity. The presence of G. tomentosa in habitats bordering salt marshes is a strategy to avoid plant competition and extreme water stressSoriano, P.; Moruno ManchĂłn, JF.; Boscaiu Neagu, MT.; Vicente Meana, Ó.; Hurtado, A.; Llinares Palacios, JV.; Estrelles, E. (2014). Is salinity the main ecologic factor that shapes the distribution of two endemic Mediterranean plant species of the genus Gypsophila?. Plant and Soil. 384(1-2):363-379. doi:10.1007/s11104-014-2218-2S3633793841-2Alonso MA (1996) Flora y vegetaciĂłn del Valle de Villena (Alicante). Instituto de Cultura Juan Gil-Albert, AlicanteAlvarado JJ, Ruiz JM, LĂłpez-Cantarero I, Molero J, Romero L (2000) Nitrogen metabolism in five plant species characteristic of gypsiferous soils. Plant Physiol 156:612–616Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216Ashraf MY (2009) Salt tolerance mechanisms in some halophytes from Saudi Arabia and Egypt. Res J Agric Biol Sci 5:191–206Bates LS, Waldren RP, Tear LD (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207Ben-Gal A, Neori-Borochov H, Yermiyahu U, Shani U (2009) Is osmotic potential a more appropriate property than electrical conductivity for evaluating whole plant response to salinity? Environ Exp Bot 65:232–237Biondi E (2011) Phytosociology today: Methodological and conceptual evolution. Plant Biosyst 145:19–29Boscaiu M, Bautista I, LidĂłn A, Llinares J, Lull C, Donat P, Mayoral O, Vicente O (2013a) Environmental-dependent proline accumulation in plants living on gypsum soils. Acta Physiol Plant 35:2193–2204Boscaiu M, Llul C, Llinares J, Vicente O, Boira H (2013b) Proline as a biochemical marker in relation to the ecology of two halophytic Juncus species. J Plant Ecol 6:177–186Bradford KJ (1990) A water relations analysis of seed germination rates. Plant Physiol 94:840–849Breckle SW (1999) Halophytic and gypsophytic vegetation of the Ebro-Basin at Los Monegros. In: Melic A, Blasco-Zumeta J (eds) Manifiesto cientĂ­fico por Los Monegros, vol 24, Bol. SEA., pp 101–104Brenchley JL, Probert RJ (1998) Seed germination responses to some environmental factors in the sea grass Zoostera capricorni from eastern Australia. Aquat Bot 62:177–188Cañadas EM, Ballesteros M, Valle F, Lorite J (2013) Does gypsum influence seed germination? Turk J Bot 38:141–147Chen Z, Cuin TA, Zhou M et al (2007) Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot 58:4245–4255Chutipaijit S, Cha-Um S, Sompornailin K (2009) Differential accumulation of proline and flavonoids in Indica rice varieties against salinity. Pak J Bot 41:2497–2506Cushman JC (2001) Osmoregulation in plants: implications for agriculture. Am Zool 41:758–769Debussche M, Thompson JD (2003) Habitat differentiation between two closely related Mediterranean plant species, the endemic Cyclamen balearicum and the widespread C. repandum. Acta Oecol 24:35–45Eskandari H, Kazemi K (2011) Germination and seedling properties of different wheat cultivars under salinity conditions. Not Sci Biol 3:130–134FAO (2006) Guidelines for soil descriptions, 5th edn. Food and Agricultural Organization of United Nation, RomeFerrandis P, Herranz JM, Copete MA (2005) CaracterizaciĂłn florĂ­stica y edĂĄfica de las estepas yesosas de Castilla-La Mancha. Invest Agrar Sist Recur For 14:195–216Flowers TJ, Hall JL (1978) Salt tolerance in Suaeda maritima (L.) Dum. The effect of sodium chloride on growth and soluble enzymes in a comparative study with Pisum sativum L. J Exp Bot 23:310–321Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Q Rev Biol 61:313–335GarcĂ­a-Fuentes A, Salazar C, Torres JA, Cano E, Valle F (2001) Review of communities of Lygeum spartum L. in the south-eastern Iberian Peninsula (western Mediterranean). J Arid Environ 48:323–339GĂ©hu JM (2006) Dictionnaire de Sociologie et SynĂ©cologie VĂ©gĂ©tales. J. Cramer, Berlin-Stuttgart, p 899GĂ©hu JM (2011) On the opportunity to celebrate the centenary of modern phytosociology in 2010. Plant Biosyst 145(suppl):4–8Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: human causes, extent, management and case studies. Canberra, Australia. CAB International, The Australian National University, WallingfordGrigore MN, Boscaiu M, Vicente O (2011) Assessment of the relevance of osmolyte biosynthesis for salt tolerance of halophytes under natural conditions. Eur J Plant Sci Biotech 5:12–19Grigore MN, Villanueva M, Boscaiu M, Vicente O (2012a) Do halophytes really require salts for their growth and development? An experimental approach mitigation of salt stress-induced inhibition of Plantago crassifolia reproductive development by supplemental calcium or magnesium. Not Sci Biol 4:23–29Grigore MN, Boscaiu M, Llinares J, Vicente O (2012b) Mitigation of salt stressed-induced Inhibition of Plantago crassifolia reproductive development by supplemental calcium or magnesium. Not Bot Horti Agrobo 40:58–66Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102Ishikawa SI, Kachi N (2000) Differential salt tolerance of two Artemisia species growing in contrasting coastal habitats. Ecol Res 15:241–247Kebreab E, Murdoch AJ (1999) Modelling the effects of water stress and temperature on germination rate of Orobanche aegyptiaca seeds. J Exp Bot 50:655–664Khan MA (2002) Halophyte seed germination: Success and Pitfalls. In: Hegazi AM, El-Shaer HM, El-Demerdashe S et al (eds) International symposium on optimum resource utilization in salt affected ecosystems in arid and semi arid regions. Desert Research Centre, Cairo, pp 346–358Khan MA, Gul B, Weber DJ (2000) Germination responses of Salicornia rubra to temperature and salinity. J Arid Environ 45:207–214Khan A, Rayner GD (2003) Robustness to non-normality of common tests for the many-sample location problem. J Appl Math Decis Sci 7:187–206LidĂłn A, Boscaiu M, Collado F, Vicente O (2009) Soil requirements of three salt tolerant, endemic species from south-east Spain. Not Bot Horti Agrobo 37:64–70LĂłpez GonzĂĄlez G (1990) Gypsohila L. In: Castroviejo S, LaĂ­nz M, LĂłpez G et al (eds) Flora IbĂ©rica 2. Real JardĂ­n BotĂĄnico, Madrid, pp 408–415Lutts S, Kinet JM, Bouharmont J (1996) Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity resistance. Plant Growth Regul 19:207–218Madidi S, Baroudi B, Ameur FB (2004) Effects of salinity on germination and early growth of barley (Hordeum vulgare L.) cultivars. Int J Agric Biol 6:767–770Marchal FM, LendĂ­nez ML, Salazar C, Torres JA (2008) Aportaciones al conocimiento de la vegetaciĂłn gispsĂ­cola en el occidente de la provincia de Granada (sur de España). Lazaroa 29:95–100MĂ©dail F, Verlaque R (1997) Ecological characteristics and rarity of endemic plants from southern France and Corsica: implications for biodiversity conservation. Biol Conserv 80:269–281Meyer SE (1986) The ecology of gypsophile endemism in the Eastern Mojave desert. Ecology 67:1303–1313Moruno F, Soriano P, Oscar V, Boscaiu M, Estrelles E (2011) Opportunistic germination behaviour of Gypsophila (Caryophyllaceae) in two priority habitats from semi-arid Mediterranean steppes. Not Bot Horti Agrobo 9:18–23Mota JF, SĂĄnchez GĂłmez P, Merlo Calvente ME, CatalĂĄn RodrĂ­guez P, Laguna Lumbreras E, de la Cruz RM, Navarro Reyes FB, Marchal Gallardo F, BartolomĂ© Esteban C, MartĂ­nez Labarga JM, Sainz Ollero H, Valle Tendero F, Serra Laliga L, MartĂ­nez HernĂĄndez F, Garrido Becerra JA, PĂ©rez GarcĂ­a FJ (2009) AproximaciĂłn a la checklist de los gipsĂłfitos ibĂ©ricos. An Biol 31:71–80Mota JF, Sola AJ, JimĂ©nez-SĂĄnchez ML, PĂ©rez-GarcĂ­a F, Merlo ME (2004) Gypsicolous flora, conservation and restoration of quarries in the southeast of the Iberian Peninsula. Biodivers Conserv 13:1797–1808Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250Palacio S, Escudero A, Montserrat-MartĂ­ G, Maestro M, Milla R, Albert M (2007) Plants living on gypsum: beyond the specialist model. Ann Bot 99:333–343Peinado M, MartĂ­nez-Parras JM (1982) Sobre la posiciĂłn fitosociolĂłgica de Gypsophila tomentosa L. Lazaroa 4:129–140Pueyo Y, Alados CL, Maestro M, Komac B (2007) Gypsophile vegetation patterns under a range of soil properties induced by topographical position. Plant Ecol 189:301–311Rasband WS (1997–2012) ImageJ. U S National Institutes of Health. http://rsb.info.nih.gov/ij/ , Bethesda, MarylandRivas-MartĂ­nez S (2005) Notions on dynamic-catenal phytosociology as a basis of landscape science. Plant Biosyst 139:135–144Rivas-MartĂ­nez S, Rivas-Saenz S (1996–2009) Worldwide bioclimatic classification system, Phytosociological Research Center, Spain. http://www.globalbioclimatics.org . Accessed 1 July 2013Rivas-MartĂ­nez S, FernĂĄndez-GonzĂĄlez F, Loidi J, LousĂŁ M, Penas A (2001) Syntaxonomical checklist of vascular plant communities of Spain and Portugal to association level. Itinera Geobot 14:5–341SalmerĂłn-SĂĄnchez E, MartĂ­nez-Nieto MI, MartĂ­nez-HernĂĄndez F, Garrido-Becerra JA, Mendoza-FernĂĄndez AJ, Gil de Carrasco C, Ramos-Miras JJ, Lozano R, Merlo ME, Mota JF (2014) Ecology, genetic diversity and phylogeography of the Iberian endemic plant Jurinea pinnata (Lag.) DC. (Compositae) on two special edaphic substrates: dolomite and gypsum. Plant Soil 374:233–250Saradhi P, Alia P, Arora S, Prasad KV (1995) Proline accumulates in plants exposed to UV radiation and protects them against UV induced peroxidation. Biochem Biophys Res Commun 209:1–5Sekmen AH, Turkan I, Tanyolac ZO, Ozfidan C, Dinc A (2012) Different antioxidant defense responses to salt stress during germination and vegetative stages of endemic halophyte Gypsophila oblanceolata Bark. Environ Exp Bot 77:63–76Tipirdamaz R, Gagneul D, Duhaze C, Ainouche A, Monnier C, Ozkum D, Larher F (2006) Clustering of halophytes from an inland salt marsh in Turkey according to their ability to accumulate sodium and nitrogenous osmolytes. Environ Exp Bot 57:139–153Ungar IA (1996) Effect of salinity on seed germination, growth, and ion accumulation of Atriplex patula (Chenopodiaceae). Am J Bot 83:604–607USDA-ARS (2008) Research databases. Bibliography on salt tolerance. George E. Brown, Jr. Salinity Lab. US Dep. Agric., Agric. Res. Serv. Riverside, CA. http://www.ars.usda.gov/Services/docs.htm?docid=8908USSL Staff (1954) Diagnosis and improvement of saline and alkali soils. US Department of Agriculture Handbook no. 60, 160 ppVicente O, Boscaiu M, Naranjo M, Estrelles E, BellĂ©s JM, Soriano P (2004) Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). J Arid Environ 58:463–48

    Dielectric Properties of TiO2/Silicone Rubber Micro- and Nanocomposites

    Get PDF
    Room temperature vulcanized (RTV) silicone rubber SR/TiO2 nanocomposites and microcomposites are developed and characterized, and their dielectric behaviour and electrical conductivity are studied in this paper. We demonstrate that the surfactant Triton X-100 greatly improves the dispersal of micro- and nanoparticles across the surface to produce more homogeneous composites that have improved dielectric properties. This heightened dispersal with the presence of a surfactant is also confirmed by SEM analysis. We also discuss the influence of the filler concentration and particle size on the dielectric behaviour of the nanocomposites and the microcomposite surfaces having a frequency range of 40 Hz to 2 MHz. The dielectric properties are improved by the introduction of 5 wt.% and 10 wt.% TiO2 nano- and microparticles. Furthermore, there is an improvement in the permittivity values for the microcomposites compared to the nanocomposites for all frequencies. This finding is of great importance for high-voltage electrical insulation

    Dielectric Properties of TiO 2

    No full text

    Devastating Decline of Forest Elephants in Central Africa.

    Get PDF
    African forest elephants– taxonomically and functionally unique–are being poached at accelerating rates, but we lack range-wide information on the repercussions. Analysis of the largest survey dataset ever assembled for forest elephants (80 foot-surveys; covering 13,000 km; 91,600 person-days of fieldwork) revealed that population size declined by ca. 62% between 2002–2011, and the taxon lost 30% of its geographical range. The population is now less than 10% of its potential size, occupying less than 25% of its potential range. High human population density, hunting intensity, absence of law enforcement, poor governance, and proximity to expanding infrastructure are the strongest predictors of decline. To save the remaining African forest elephants, illegal poaching for ivory and encroachment into core elephant habitat must be stopped. In addition, the international demand for ivory, which fuels illegal trade, must be dramatically reduced
    corecore