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Room temperature vulcanized (RTV) silicone rubber SR/TiO, nanocomposites and microcomposites are developed and
characterized, and their dielectric behaviour and electrical conductivity are studied in this paper. We demonstrate that the
surfactant Triton X-100 greatly improves the dispersal of micro- and nanoparticles across the surface to produce more ho-
mogeneous composites that have improved dielectric properties. This heightened dispersal with the presence of a surfactant is also
confirmed by SEM analysis. We also discuss the influence of the filler concentration and particle size on the dielectric behaviour of
the nanocomposites and the microcomposite surfaces having a frequency range of 40 Hz to 2 MHz. The dielectric properties are
improved by the introduction of 5 wt.% and 10 wt.% TiO, nano- and microparticles. Furthermore, there is an improvement in the
permittivity values for the microcomposites compared to the nanocomposites for all frequencies. This finding is of great im-

portance for high-voltage electrical insulation.

1. Introduction

Over the past decade, there has been growing interest in
nanocomposites, a new class of reinforced polymers pro-
duced by the introduction of nanoparticles into a polymeric
matrix [1]. The large specific surface area of nanoparticles
makes them very reactive, thereby giving nanocomposite
coatings unique and remarkable properties. Multiple char-
acteristics, including hydrophobicity, flame resistance, and
the UV resistance of coatings, can be improved by adding
small quantities of nanoparticles [2-4]. Furthermore, these
coatings can be applied to all surfaces. The difficulties en-
countered during the elaboration of nanocomposites gen-
erally involve the choice of base polymer as well as the nature
of the nanoparticles (both in terms of size and quantity), the
optimization of the production process, and, in particular,
the verification of the homogeneous dispersal of nano-
particles within the polymeric matrix [5].

The degree of nanoparticle agglomeration in a sample
reflects the quality of the dispersal. One of the limitations to
the development of nanocomposites is the ability to develop

manufacturing processes that favour the homogeneous and
reproducible dispersal of nanoparticles within nano-
composites. Poor dispersal increases the number and size of
the aggregates, leading to the deterioration of the properties
of the materials [6-8].

Moreover, the instability of nanoparticles with regard to
agglomeration poses a real obstacle in controlling their size.
Three approaches are generally adopted to stabilize nano-
particles against agglomeration and/or growth: stearic sta-
bilization, electrostatic stabilization, and microemulsion
synthesis. From these approaches, we used stearic stabili-
zation by a surfactant. This technique allows the surface of
the nanoparticles to be protected by the chosen surfactant,
thus generating a stearic effect. This method is favoured as it
is not very sensitive to the nature of chemical species present
in the environment.

The surfactant molecules concentrate generally at in-
terfaces and position themselves in such a way to increase
the attractive interactions. As a result, these surfactants are
adsorbed, which may cause a decrease in the surface tension.
Triton X-100 (C,4,H,,0 (C,H,0),,, where n=9-10) was used
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as a surfactant by Ramirez et al. [9] and showed that Triton
X-100 improves the dispersal of nanosilica particles to
produce more homogeneous nanocomposite surfaces [9].

A wide variety of insulating materials are used for high-
voltage outdoor insulation. Of these, silicone rubber has
received the most attention. This polymer has unique
properties, namely, high water repellency, ultraviolet (UV)
resistance, and a good resistance to mechanical and climatic
constraints. However, silicone rubber (SR) loses its hydro-
phobic behaviour over time.

To improve some of the silicone rubber properties and to
reduce costs, nanoparticles may be added to the base
polymer. The addition of these particles can increase the
relative permittivity, surface hydrophobicity, and electrical
conductivity of the composite silicone [10, 11]. Semi-
conducting materials, such as TiO, or ZnO nanoparticles,
can also ensure the homogenization and distribution of
electric fields on the insulators to reduce electrical stresses,
thereby minimizing the surface flashover of insulators [6].
Cherney et al. [10] demonstrated that the introduction of
barium titanate contributed to increasing the relative per-
mittivity of silicone composites. Numerous studies have
demonstrated that the obtained increase in relative per-
mittivity is a function of concentration and the type of filler
[12-17]. Momen and Farzaneh [17] have developed nano-
composite coatings of silicone rubber/ZnO and showed that
permittivity increases with an increased concentration of
ZnO in the coatings. Furthermore, these coatings favour
a reduction in ice accumulation. Also, Feng et al. [18] have
developed nanocomposite films of polyimide/TiO, com-
posites by in situ dispersive polymerization. The pinning
effect of TiO, nanoparticles to polyimide chain motion
reduces relative permittivity of composites at lower doping
concentrations (0-3%). As TiO, doping concentration in-
creases (5%), the increased number of TiO, nanoparticles
and the polarization effect of nanoparticle interfaces surpass
the pinning effect and enhance the relative permittivity of
composites above that of pure polyimide.

In this study, titanium dioxide (TiO,) is selected as a filler
due to its dielectric properties and, among other charac-
teristics, its high permittivity relative to the RTV silicone
rubber polymer. This relatively large permittivity is re-
sponsible for significant variations in the effective permit-
tivity with changes of the TiO, concentration in the matrix.
Also, this semiconductive material helps improve the per-
formance of insulating materials in polluted environments
by controlling the distribution of the electrical field, thereby
preventing moisture condensation by heating [10]. To date,
little has been published regarding the properties of TiO,-
filled silicon rubber for outdoor applications, and published
studies related to the electrical conductivity of nano-
composites and microcomposites are very scarce. Moreover,
existing studies mostly focus on conducting fillers.

Given this, the present study investigates the dielectric
behaviour and electrical conductivity of RTV silicone rubber
reinforced with different TiO, concentrations and sizes. For
this purpose, TiO, particles were modified by adding Triton
X-100, a surfactant, to improve dispersal of the filler par-
ticles. Samples of RTV SR/TiO, were characterized using
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a scanning electron microscope (SEM) and an impedance
analyzer.

2. Experimental Procedures

For this study, we used a commercial RT'V silicone rubber from
a Xiameter that contains 40-70 wt.% alumina hydrate. We also
used titanium dioxide (TiO,) particles as filler. To assess the
impact of TiO, particle size on the dielectric properties, average
diameters of 25 nm and 1 um were selected for TiO, particles
supplied by Sigma Aldrich. The Triton X-100 surfactant was
applied to disperse the fillers. Nanocomposites and micro-
composites were prepared using a combination of two different
processing techniques: mechanical mixing and ultrasonication.
Initially, the TiO, particles were dried at 100°C for 24 hours
before mixing with silicone rubber. A specific amount of filler
particles (based on weight fractions) was mixed with 100 mL of
hexane and 2 wt% of nonionic Triton X-100. It should be noted
that beyond this percentage, the hydrophobicity of the surface
was lost. Subsequently, the prepared solution was placed in an
ultrasonic bath for 20 minutes and then mechanically stirred at
700 rpm for two hours to achieve a good dispersal of nano-
particles and a homogenized solution. Approximately 20 mL of
RTV SR was added to the prepared solution. This solution was
then placed back into the ultrasonic bath for 60 min and
subsequently mechanically stirred at 600 rpm for 24 h.

Once prepared, the solution was poured into a 6.5cm
diameter mold that was kept in an oven at 70°C for 48 h to
evaporate the solvent.

The morphological characterization was examined using
a LEO scanning electron microscope (SEM). The dielectric
permittivity was measured using an Agilent 4294A impedance
analyzer over the frequency range of 40 Hz-2 MHz, and
conductivity was determined using Glassman high voltage.

Conductivity was calculated from the resistance, using
the following relationship:

U =RI, (1)

where U is the voltage (V), R is the resistance (Q2), and I is
the intensity of the electric current (A).

For this purpose, a discontinuous current (between
40 A and 150 yA) and a maximum voltage of 50kV were
used. Resistance R was determined by graphical analysis.
Values of I versus V were plotted for a number of different
voltage settings, and the correlation coefficient was obtained
by linear fit to the data. Resistance R was then obtained from
the slope:

S
-R.2, 2
0 I (2)
where ¢ is the resistivity of the coating (QQ-m), R is the
resistance (Q2), L is the sample length (m), and S is the section
of the coating (m?).
In our case, the sample length is 8 cm:

o=1 3)
H

where ¢ is the conductivity of the coating (Q-m)™" and ¢ is
the resistivity of coating (Q-m).
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3. Results and Discussion

The morphology and dielectric properties of the produced
coatings were subsequently evaluated.

3.1. Surfactant Influence on the Morphology of Nanocomposites.
The dispersal of the fillers within the silicone rubber was
evaluated using a SEM before analysing the morphology of
the nanocomposites. Samples of approximately 1 mm x 1
mm were prepared by cutting the nanocomposites at dif-
ferent locations.

Dispersal of the nanofillers is critical for obtaining
consistent properties for the nanofilled material. To in-
vestigate the effects of the surfactant on the dispersal of the
nanoparticles in the polymer matrix, RTV SR/TiO, samples
containing 10% titanium by weight, with and without the
addition of surfactant, were prepared.

The nonionic surfactant Triton X-100 was used to im-
prove particle dispersal in the polymer. Particles are highly
charged and thus tend to agglomerate and form larger
particles. This agglomeration reduces markedly the particle
surface to volume ratio that compromises the unique particle
properties in the polymer [19]. Figures 1(a) and 1(b) show
that the fabricated nanocomposite has a large number of
agglomerates and poor nanoparticle dispersal in the poly-
mer. The sample also has cracks stemming from poor dis-
persal (Figure 1(b)).

The microstructure of the surface at different magnifi-
cation levels (Figure 2) indicates that the nanoparticles are
uniformly dispersed in the polymer matrix. This illustrates
how the introduction of Triton X-100 leads to a significant
reduction in agglomerates by reducing the surface energy
and increasing the separation of agglomerations, thereby
improving the dispersal of nanoparticles. A good dispersal is
achieved when the repulsive forces between the particles are
greater than the Van der Waals forces of attraction or the
mechanical couplings between particles [20].

3.2. Effect of Surfactant on Relative Permittivity. Poor dis-
persal of the particles in the polymer generally results in
nanocomposites of poor and nonhomogeneous quality. It
can also generate unwanted effects such as a drop in material
performance. These problems can be solved by modifying
the surface of the TiO, nanoparticles with the use of sur-
factants. Kim et al. [21] showed that phosphoric acids can
modify the surface of BaTiO; nanoparticles by promoting
the bond between the organophosphonate group and the
oxide surface to create a stable organic oxide interface. This
results in a good compatibility with the matrix and an
improvement in the electrical properties of the material.
Similarly, Cherney et al. [10] demonstrated that the in-
troduction of inorganic fillers into the silicone rubber im-
proves its dielectric properties. After the addition of 30%
BaTiOs, the relative permittivity of the polymer increased
from 2.7 to 10. The study also showed that the use of ma-
terials having a high relative permittivity can reduce con-
siderably electrical stress and improve the distribution of the
electric field.

In this work, the dielectric properties of composites were
determined using Agilent 4294A impedance analyzer. The
studied frequencies ranged from 40 Hz to 2 MHz.

By way of comparison with the dielectric response, the
variation of permittivity against frequency was studied for two
samples composed of silicone rubber filled with a percentage
of 10% wt of TiO, nanoparticles: one having 2% wt Triton
X-100 and the other sample without a surfactant (Figure 3).

As illustrated in Figure 3, the permittivity of the two
samples increases as frequency decreases: at low frequencies,
all free dipolar groups can move, resulting in a high per-
mittivity. At higher frequencies, these groups struggle to
move, causing a reduction in permittivity.

However, the homogeneous distribution of particles is the
main factor to explain the improvement in dielectric prop-
erties. In fact, the presence of Triton X-100 provides
a chemical compatibility between the titanium dioxide par-
ticles and the silicone rubber, resulting in a more uniform
particle distribution characterized by an increase in dielectric
permittivity from 3.93 to 5.16 at 60 Hz between the samples.

Several factors contribute to the improvement of the
properties of the composite, in particular the adhesion of the
polymer matrix to the surface of the particles. An im-
provement in adhesion to the interface can be achieved by
treatment of the particles with a dispersal agent (solvent). In
our case, isopropanol was chosen as a solvent to provide
a more homogeneous solution. Dielectric measurements
confirmed the more uniform morphological structure
resulting in an increased relative permittivity in the case of the
composite with Triton X-100 when compared to the surface
nonhomogeneity and weak permittivity in the other sample.

3.3. Influence of Filler Concentration on Relative Permittivity.
The dielectric behaviour as a function of frequency in our
nanocomposites is mainly determined by polarization re-
lated to RTV silicone rubber, TiO, nanoparticles, and in-
terfacial polarization.

The variation of the real portion of the permittivity for
RTV silicone rubber reinforced with different concentra-
tions of TiO, nanofillers at 165 Hz is shown in Figure 4.

It can be seen that the real relative permittivity (e,) in-
creases as the TiO, content in the RTV-SR is increased. As the
individual permittivity of TiO, is greater than that of pure
silicone rubber, it influences the value of the resultant
nanocomposite permittivity. At a frequency of 165Hz and
a 20 wt.% TiO, loading, the real portion of permittivity is
quadrupled. The addition of TiO, having a permittivity
greater than that of the base polymer increases the permit-
tivity of the polymer composite, mainly due to the influence of
the filler permittivity. Increasing the nanofiller concentration
in RTV silicone rubber causes the permittivity to increase.

3.4. Effect of Particle Size and Concentration on the Relative
Permittivity. The use of high-permittivity materials greatly
reduces electrical stress (partial electrical discharge) [10]. It
is for this reason that the evolution of relative permittivity
(e,) as a function of the frequency for the nanocomposites
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FIGURE 2: SEM images of silicone rubber/TiO, with Triton X-100. (a) Low magnification; (b) high magnification.
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FIGURE 3: Variation of the permittivity as a function of frequency for silicone rubber/TiO, nanocomposite.

and microcomposites is studied. The results are presented
for particle sizes of 25nm and 1 ym.

The permittivity of pure and charged polymers increases
as frequency decreases (Figure 5) as permittivity is dependent
on the frequency in polymer systems (e, oc 1/f) [22].

For microcomposites, the permittivity of both the 5% and
10% TiO, microparticles tends to increase more sharply at

lower frequencies in the case of nanocomposites. This dif-
ference between micro- and nanocomposites is likely due to
the presence of a significant volume fraction of the nano-
particles at the interfaces in the material preventing the
migration of ions. This may subsequently cause a reduction in
the accumulation of charges and, therefore, lower the relative
permittivity [20]. On the other hand, the strong interactions
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FIGURE 5: Real portion of relative permittivity at different loading
fillers and its size in relation to frequency.

between the nanoparticles and the polymer can lead to a stable
interface having fewer free ions and defects, reducing the
interfacial polarization in the bulk nanocomposite.

At low frequencies, all free dipolar groups can move and
thereby produce a high permittivity. At high frequencies,
these groups struggle to move, causing a reduction in
permittivity.

Particles of TiO, have a high ionic polarization due to the
presence of Ti*" and O~ ions, increasing the static permittivity.
This mechanism is similar for both nano- and microcomposites.

Furthermore, the relative permittivity (e,) increases as
the concentration of TiO, increases (Figure 5). Since the
individual permittivity of TiO, is greater than that of the
polymer, the latter will have an influence on the permittivity
obtained for the nano- and microcomposites.

SEM assessment of the morphology of the nano- and
microcomposites structure shows a uniform dispersal of
nano- and microparticles in the polymer, confirming the
efficiency of the synthesis of these materials process
(Figures 6(a) and 6(b)). The morphology of both nano- and
microcomposites samples is nearly identical.

3.5. Electrical Conductivity as a Function of Particle Size and
Concentration. An improvement in the electrical perfor-
mance of insulators subjected to pollution conditions is
achieved by providing an electrical conductive insulating
material [10]. The electrical conductivity of micro- or
nanocomposites is conditioned by the formation of a three-
dimensional network of particles within the polymer. Two
main mechanisms are responsible for the electrical perfor-
mance of micro- and nanocomposites [23]. The simplest
case occurs when there is direct contact between the particles
as electrons can be transferred from one particle to another.
The second mechanism is the tunnel effect [24] that occurs
when there is a thin polymer layer separating two particles.
Even if there is no contact between the particles, electron
transfer is still possible despite an insulating barrier between
the particles. When the potential difference reaches a certain
threshold, the electrons are able to jump from one particle to
another. For these mechanisms to come into play, it is first
necessary that a grid forms within the micro- or nano-
composites. However, various factors influence the presence
or absence of this network. Particle concentration, for ex-
ample, should allow the formation of the network through
the entire sample if sufficiently high.

The evolution of the relative permittivity (e,) as a func-
tion of frequency for both nanocomposites and micro-
composites has been assessed for two sizes of particles:
25nm and 1pm.

The formation of an electrical path in micro- or
nanocomposites can be determined by measuring the
electrical conductivity of these nanocomposites at different
concentrations.

Table 1 summarizes the results for the conductivity (o)
measurements obtained for the nano- and microcomposites.
These values were obtained from the measurement of the
resistance, using the relationships (2), (3), and (4).

The conductivity of pure SR is 1.21x 107>, By adding
nanoparticles and microparticles, this conductivity increases
slightly as TiO, content is increased (to 5 wt.%), due to the
semiconducting properties of TiO,. From this concentration,
there is a decrease with excess TiO, content (10 wt.%)
(Figure 7, Table 1). The decrease in conductivity may be due to
particle blockage of the conduction path by the TiO, particles
embedded within the polymer [25]. In addition, increasing
the concentration of TiO, for nano- and microcomposites
produced a large number of polarons when the coupling of
interpolarons became large. This phenomenon led to a severe
pinning effect of the polarons that limited their contribution
and resulted in reduced conductivity. Moreover, the recovery
of TiO, particles by the polymer prevents contact between the
particles, inhibiting the semiconducting properties of TiO,.

4. Conclusion

Despite the great interest in nanocomposites, there are, to
our knowledge, very few studies addressing the elaboration
and the development of nanocomposites for outdoor
insulation applications. However, microcomposites have
been used in commercial materials and offer a potential use
in these outdoor situations.
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FIGURE 6: SEM images of silicone rubber/TiO,. (a) Nanocomposites; (b) microcomposites.

TasLE 1: Conductivity of micro/nanocomposites relative to the concentration of TiO,.
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FIGURE 7: Evolution of the electrical conductivity of the microcomposites and nanocomposites based on the concentration of TiO,.

In this study, RTV silicone rubber/titanium dioxide
nanocomposites and microcomposites were prepared and
analyzed at different concentrations of TiO,. We observed that
a surface treatment of TiO, with a surfactant can improve the
dispersal of particles in silicone rubber. SEM analysis showed
a decrease in particle agglomeration confirming that the
surfactant Triton X-100 improves the dispersal of the particles.
We investigated the dielectric properties of nano- and
microcomposite coatings. For microcomposites, the permit-
tivity tended to increase very strongly in comparison with
nanocomposites. This pattern may be due to interfacial po-
larization that is higher in microcomposite systems. Also, the
results showed that relative permittivity increases with

increased TiO, concentrations. Finally, we studied changes in
electrical conductivity in relation to particle size and TiO,
concentration. Conductivity increased slightly for the nano-
composites that had a low concentration of TiO, (5 wt.%)
compared to other samples. Conductivity decreased slightly at
higher concentrations of TiO,. This decrease can be attributed
to the blocking of conduction paths by TiO, particles em-
bedded in the polymer.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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