18,455 research outputs found

    Serving children: the impact of poverty on children's experiences of services

    Get PDF
    This study arose from the identification of a gap in knowledge and corresponding need for the development of a better contemporary understanding of children's experiences of poverty. Focusing on children aged 10 - 14 years, the study aimed to provide a perspective on the lives of children and young people affected by poverty in Scotland through comparing the experiences of children living in poverty with those more economically advantaged

    Universality of residence-time distributions in non-adiabatic stochastic resonance

    Get PDF
    We present mathematically rigorous expressions for the residence-time and first-passage-time distributions of a periodically forced Brownian particle in a bistable potential. For a broad range of forcing frequencies and amplitudes, the distributions are close to periodically modulated exponential ones. Remarkably, the periodic modulations are governed by universal functions, depending on a single parameter related to the forcing period. The behaviour of the distributions and their moments is analysed, in particular in the low- and high-frequency limits.Comment: 8 pages, 1 figure New version includes distinction between first-passage-time and residence-time distribution

    Total scattering descriptions of local and cooperative distortions in the oxide spinel (Mg,Cu)Cr2O4 with dilute Jahn-Teller ions

    Full text link
    The normal spinel oxide MgCr2O4 is cubic at room temperature while the normal spinel CuCr2O4 is tetragonal as a consequence of the Jahn-Teller nature of Cu2+ on the tetrahedral sites. Despite different end-member structures, complete solid solutions of Mg_{1-x}Cu_xCr2O4 can be prepared that display a first-order structural transition with composition x = 0.43 at room temperature. Reverse Monte Carlo analysis of total neutron scattering on data acquired between 300 K and 15 K on samples with x = 0.10, 0.20, and 0.43 provides unbiased local and average structure descriptions of the samples, including an understanding of the transition from local Jahn-Teller distortions in the cubic phase to cooperative distortions that result in a tetragonal structure. Distributions of continuous symmetry measures help to understand and distinguish distorted and undistorted coordination around the tetrahedral site in the solid solutions. Magnetic exchange bias is observed in field-cooled hysteresis loops of samples with dilute Cu2+ concentration and in samples with tetragonal--cubic phase coexistence around 300 K.Comment: 10 pages, 14 figure

    On the noise-induced passage through an unstable periodic orbit II: General case

    Full text link
    Consider a dynamical system given by a planar differential equation, which exhibits an unstable periodic orbit surrounding a stable periodic orbit. It is known that under random perturbations, the distribution of locations where the system's first exit from the interior of the unstable orbit occurs, typically displays the phenomenon of cycling: The distribution of first-exit locations is translated along the unstable periodic orbit proportionally to the logarithm of the noise intensity as the noise intensity goes to zero. We show that for a large class of such systems, the cycling profile is given, up to a model-dependent change of coordinates, by a universal function given by a periodicised Gumbel distribution. Our techniques combine action-functional or large-deviation results with properties of random Poincar\'e maps described by continuous-space discrete-time Markov chains.Comment: 44 pages, 4 figure

    High-frequency eddy current measurements using sensor-mounted electronics

    Get PDF
    Eddy current techniques are used widely for the detection of surface-breaking cracks in metal samples and the detection of such defects in metals with low electrical conductivity is challenging. To achieve good sensitivity to small surface cracks, the electromagnetic skin depth of the eddy current needs to be small, which often means operating at MHz frequencies. One of the major challenges in high-frequency eddy current testing is that the capacitance of the cable between the instrument electronics and the sensor head becomes significant in the MHz range, making the system unstable and introducing noise into the system as the cable moves and interacts electrically with objects close to it. There are significant benefits to locating the electrical circuitry directly behind the eddy current sensor coils, reducing issues with cable-induced electrical noise, enabling the detection of smaller defects at earlier stages of growth. Materials such as nickel-based super-alloys, titanium, austenitic steel and carbon fibre composites are often used in safety-critical applications, where the ability to detect surface cracks at the earliest possible stage is vital. Examples are presented that show the detection of small defects in a range of challenging materials at eddy current frequencies up to more than 15 MHz

    Proper Motions of H2O Masers in the Water Fountain Source IRAS 19190+1102

    Full text link
    We report on the results of two epochs of Very Long Baseline Array (VLBA) observations of the 22 GHz water masers toward IRAS 19190+1102. The water maser emission from this object shows two main arc-shaped formations perpendicular to their NE-SW separation axis. The arcs are separated by ~280 mas in position, and are expanding outwards at an angular rate of 2.35 mas/yr. We detect maser emission at velocities between -53.3 km/s to +78.0 km/s and there is a distinct velocity pattern where the NE masers are blueshifted and the SW masers are redshifted. The outflow has a three-dimensional outflow velocity of 99.8 km/s and a dynamical age of about 59 yr. A group of blueshifted masers not located along the arcs shows a change in velocity of more than 35 km/s between epochs, and may be indicative of the formation of a new lobe. These observations show that IRAS 19190+1102 is a member of the class of "water fountain"' pre-planetary nebulae displaying bipolar structureComment: Accepted for publication in ApJ, corrected typo

    Critical Temperature tuning of Ti/TiN multilayer films suitable for low temperature detectors

    Full text link
    We present our current progress on the design and test of Ti/TiN Multilayer for use in Kinetic Inductance Detectors (KIDs). Sensors based on sub-stoichiometric TiN film are commonly used in several applications. However, it is difficult to control the targeted critical temperature TCT_C, to maintain precise control of the nitrogen incorporation process and to obtain a production uniformity. To avoid these problems we investigated multilayer Ti/TiN films that show a high uniformity coupled with high quality factor, kinetic inductance and inertness of TiN. These features are ideal to realize superconductive microresonator detectors for astronomical instruments application but also for the field of neutrino physics. Using pure Ti and stoichiometric TiN, we developed and tested different multilayer configuration, in term of number of Ti/TiN layers and in term of different interlayer thicknesses. The target was to reach a critical temperature TCT_C around (1Ă·1.5)(1\div 1.5) K in order to have a low energy gap and slower recombination time (i.e. low generation-recombination noise). The results prove that the superconductive transition can be tuned in the (0.5Ă·4.6)(0.5\div 4.6) K temperature range properly choosing the Ti thickness in the (0Ă·15)(0\div 15) nm range, and the TiN thickness in the (5Ă·100)(5\div 100) nm rang

    Kinetic Resolution in Asymmetric Epoxidation using Iminium Salt Catalysis

    Get PDF
    The first reported examples of kinetic resolution in epoxidation reactions using iminium salt catalysis are described, providing up to 99% ee in the epoxidation of racemic cis-chromenes
    • …
    corecore