24,629 research outputs found
Scintillation detector for carbon-14
Detector consists of plastic, cylindrical double-wall scintillation cell, which is filled with gas to be analyzed. Thin, inner cell wall is isolated optically from outer (guard) scintillator wall by evaporated-aluminum coating. Bonding technique provides mechanical support to cell wall when device is exposed to high temperatures
Real eigenvalue analysis in NASTRAN by the tridiagonal reduction (FEER) method
Implementation of the tridiagonal reduction method for real eigenvalue extraction in structural vibration and buckling problems is described. The basic concepts underlying the method are summarized and special features, such as the computation of error bounds and default modes of operation are discussed. In addition, the new user information and error messages and optional diagnostic output relating to the tridiagonal reduction method are presented. Some numerical results and initial experiences relating to usage in the NASTRAN environment are provided, including comparisons with other existing NASTRAN eigenvalue methods
An expert system for choosing the best combination of options in a general-purpose program for automated design synthesis
An expert system was developed to aid a user of the Automated Design Synthesis (ADS) general-purpose optimization computer program in selecting the best combination of strategy, optimizer, and one-dimensional search options for solving a problem. There are approximately 100 such combinations available in ADS. The knowledge base contains over 200 rules, and is divided into three categories: constrained problems, unconstrained problems, and constrained problems treated as unconstrained problems. The inference engine is written in LISP and is available on DEC-VAX and IBM PC/XT computers
A Feynman-Kac Formula for Anticommuting Brownian Motion
Motivated by application to quantum physics, anticommuting analogues of
Wiener measure and Brownian motion are constructed. The corresponding Ito
integrals are defined and the existence and uniqueness of solutions to a class
of stochastic differential equations is established. This machinery is used to
provide a Feynman-Kac formula for a class of Hamiltonians. Several specific
examples are considered.Comment: 21 page
Pyrotechnic shock at the orbiter/external tank forward attachment
During the initial certification test of the forward structural attachment of the space shuttle orbiter to the external tank, pyrotechnic shock from actuation of the separation device resulted in structural failure of the thermal protection tiles surrounding the attachment. Because of the high shock associated with the separation bolt, the development of alternative low shock separation designs was initiated. Two concepts that incorporate a 5.08 centimeter frangible nut as the release device were developed and tested
Microlensing Constraints on Broad Absorption and Emission Line Flows in the Quasar H1413+117
We present new integral field spectroscopy of the gravitationally lensed
broad absorption line (BAL) quasar H1413+117, covering the ultraviolet to
visible rest-frame spectral range. We observe strong microlensing signatures in
lensed image D, and we use this microlensing to simultaneously constrain both
the broad emission and broad absorption line gas. By modeling the lens system
over the range of probable lensing galaxy redshifts and using on a new argument
based on the wavelength-independence of the broad line lensing magnifications,
we determine that there is no significant broad line emission from smaller than
~20 light days. We also perform spectral decomposition to derive the intrinsic
broad emission line (BEL) and continuum spectrum, subject to BAL absorption. We
also reconstruct the intrinsic BAL absorption profile, whose features allow us
to constrain outflow kinematics in the context of a disk-wind model. We find a
very sharp, blueshifted onset of absorption of 1,500 km/s in both C IV and N V
that may correspond to an inner edge of a disk-wind's radial outflow. The lower
ionization Si IV and Al III have higher-velocity absorption onsets, consistent
with a decreasing ionization parameter with radius in an accelerating outflow.
There is evidence of strong absorption in the BEL component which indicates a
high covering factor for absorption over two orders of magnitude in outflow
radius.Comment: 29 pages, 8 figure
Structural optimization of an alternate design for the space shuttle solid rocket booster field joint
A structural optimization procedure is used to determine the shape of an alternate design for the shuttle solid rocket booster field joint. In contrast to the tang and clevis design of the existing joint, this alternate design consists of two flanges bolted together. Configurations with 150 studs of 1 1/8 in. diameter and 135 studs of 1 3/16 in. diameter are considered. Using a nonlinear programming procedure, the joint weight is minimized under constraints on either von Mises or maximum normal stresses, joint opening and geometry. The procedure solves the design problem by replacing it by a sequence of approximate (convex) subproblems; the pattern of contact between the joint halves is determined every few cycles by a nonliner displacement analysis. The minimum weight design has 135 studs of 1 3/16 in. diameter and is designed under constraints on normal stresses. It weighs 1144 lb per joint more than the current tang and clevis design
SAIS Celebrates 10 Years: A Historical Summary of the Southern Association for Information Systems Conferences from 1998 -2006
The Southern Association for Information Systems (SAIS) celebrates 10 years as the first regional chapter of AIS in the southeastern United States. The purpose of this paper is to provide a historical narrative of how the conference began and summary information taken from the conference proceedings regarding the number of papers presented, location of each conference, institutions represented, and leadership of the organization
Higher-order associative processing in Hermissenda suggests multiple sites of neuronal modulation.
Two important features of modern accounts of associative learning are (1) the capacity for contextual stimuli to serve as a signal for an unconditioned stimulus (US) and (2) the capacity for a previously conditioned (excitatory) stimulus to block learning about a redundant stimulus when both stimuli serve as a signal for the same US. Here, we examined the process of blocking, thought by some to reflect a cognitive aspect of classical conditioning, and its underlying mechanisms in the marine mollusc Hermissenda. In two behavioral experiments, a context defined by chemosensory stimuli was made excitatory by presenting unsignalled USs (rotation) in that context. The excitatory context subsequently blocked overt learning about a discrete conditioned stimulus (CS; light) paired with the US in that context. In a third experiment, the excitability of the B photoreceptors in the Hermissenda eye, which typically increases following light-rotation pairings, was examined in behaviorally blocked animals, as well as in animals that had acquired a normal CS-US association or animals that had been exposed to the CS and US unpaired. Both the behaviorally blocked and the normal learning groups exhibited increases in neuronal excitability relative to unpaired animals. However, light-induced multiunit activity in pedal nerves was suppressed following normal conditioning but not in blocked or unpaired control animals, suggesting that the expression of blocking is mediated by neuronal modifications not directly reflected in B-cell excitability, possibly within an extensive network of central light-responsive interneurons
Polarization and Charge Transfer in the Hydration of Chloride Ions
A theoretical study of the structural and electronic properties of the
chloride ion and water molecules in the first hydration shell is presented. The
calculations are performed on an ensemble of configurations obtained from
molecular dynamics simulations of a single chloride ion in bulk water. The
simulations utilize the polarizable AMOEBA force field for trajectory
generation, and MP2-level calculations are performed to examine the electronic
structure properties of the ions and surrounding waters in the external field
of more distant waters. The ChelpG method is employed to explore the effective
charges and dipoles on the chloride ions and first-shell waters. The Quantum
Theory of Atoms in Molecules (QTAIM) is further utilized to examine charge
transfer from the anion to surrounding water molecules.
From the QTAIM analysis, 0.2 elementary charges are transferred from the ion
to the first-shell water molecules. The default AMOEBA model overestimates the
average dipole moment magnitude of the ion compared with the estimated quantum
mechanical value. The average magnitude of the dipole moment of the water
molecules in the first shell treated at the MP2 level, with the more distant
waters handled with an AMOEBA effective charge model, is 2.67 D. This value is
close to the AMOEBA result for first-shell waters (2.72 D) and is slightly
reduced from the bulk AMOEBA value (2.78 D). The magnitude of the dipole moment
of the water molecules in the first solvation shell is most strongly affected
by the local water-water interactions and hydrogen bonds with the second
solvation shell, rather than by interactions with the ion.Comment: Slight revision, in press at J. Chem. Phy
- …