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ABSTRACT hypotheses. One set is for constrained

An expert system to aid users of the
Automated Design Synthesis (ADS)
general-purpose optimization program has been
developed. ADS has approximately 100
combinations of strategy, optimizer, and
search options from which to choose. This
expert system aids the user in choosing the
best combination of options for solving a
particular problem. The system is written in
LISP, contains about 200 rules, and executes
on DEC-VAX and IBM PC/XT computers.

INTRODUCTION

An expert system to aid a user of the
Automated Design Synthesis (ADS)
general-purpose optimization program has
recently been developed. Because ADS has
three levels of options (strategies,
optimizers, and one-dimensional searches),
the user has approximately 100 combinations
from which to choose. This could easily
overwhelm a novice user of the program.
According to the developer, a prinecipal
difficulty with a program of such broad
capability as this is the development of a
concise set of guidelines identifying the
best choice of a combination of strategy,
optimizer, and one-dimensional search options
for a given problem. Because of this and the
anticipated high usage of ADS throughout
industry, a decision was made to develop an
expert system for ADS (EXADS).

In general, an expert system consists of
two major components, the knowledge base and
the inference engine. The knowledge base for
EXADS was developed from contributions from
the author of ADS, a literature search, and
discussions with optimization experts; and
currently contains 98 different hypotheses
and approximately 200 rules. It is divided
into three distinct sets of rules and

problems, a second set is for unconstrained
problems, and a third is for constrained
problems being treated as unconstrained
problems. The inference engine asks
questions about, makes decisions from, and
determines the consequences implied by the
knowledge built into the knowledge base. It
is written in LISP and currently executes on
DEC-VAX and IBM PC/XT computers.

The purpose of this paper is to discuss
how this expert system came into being and to
describe its major components. Also
discussed are the problems encountered during
the testing and verification of the system
and solutions to those problems.

THE ORIGIN OF THE EXPERT SYSTEM FOR ADS

The ADS (Automated Design Synthesis,
ref. 1) computer program, developed under a
NASA grant, is a general-purpose, numerical
optimization program containing a wide
variety of algorithms. ADS requires a
three—-level decision to select an .algorithm
for solving a general optimization problem.
These levels are strategy, optimizer, and
one-dimensional search. ADS allows the user
to have great flexibility in solving a
problem by providing eight strategy options
(table 1), five optimizer options (table 2),
and eight one-dimensional search options
(table 3). Table 4 shows the large number of
possible combinations of options available.

One difficulty with a program like ADS
which provides so many options, is choosing
the best possible combination of options to
solve a glven problem. This choice requires
knowledge of the problem to be solved and
experience in optimization. Typically, an
englneer has sufficient knowledge of the
problem to be solved in his or her
discipline, but lacks the necessary
experience in optimization to make a proper
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choice among the several options available at
each of the three levels in ADS. The
development of an expert system to aid an
engineer in this selection is one solution.
It is generally recognized that the
development of an expert system rests on
satisfying the following prerequisites
(ref. 2):

(1) There must be at least one human expert
acknowledged to perform the task well using
special knowledge, judgment, and experience.
Within the Interdisciplinary Research Office
(IRO) at NASA's Langley Research Center, we
have access to a renowned expert in the
optimization field as well as several other
regular, in-house users of optimization
techniques. In addition, several
optimization experts are currently werking
under grants and contracts for the, IRO,
including the author of ADS.

(2) The expert must be able to explain the
special knowledge and experience,_and the
methods used to apply them to a particular
problem. Many of the available experts also
teach optimization techniques and are
accustomed to explaining difficult concepts to
novices.

(3) The task must have a well-bounded

domain. The domain for this task i{s” bounded by
the number of possible combinations available
for ADS.

(4) The problem does not require common

sense and should take an expert from a few )
minutes to a few hours to solve. Common sense
will not be very helpful to an engineer in
selecting the best combination of options. .
Experience with ADS has shown that a c¢hoice can
almost always be made within the required time
frame.

(5) The problem should be nontrivial but
tractable, with promising avenues for
incremental expansion. Within the subject
domain, the problem is nontrivial and
tractable. It can be expanded to accomodate
new combinations of options as strategies,
optimizers, and one-dimensional searches are
added to ADS.

Since the present application appeared
to meet the required prerequisites, it was
decided to proceed with building an expert
3ystem for ADS. The first step was to begin
acquiring the expert knowledge for the
knowledge base.

KNOWLEDGE ACQUISITION

The acquisition of the expert knowledge
for the knowledge base portion of the expert
system proved to be difficult as discussed in
reference 3. Initially, the first author,
acting as knowledge engineer, met with the
in-house expert and the second author to
discuss what rules they would follow in
choosing from a small subset of the possible
combinations of options in ADS. These rules
were then coded into production rules similar

to those described in reference 4.
Concurrently, a questionnaire was sent to
engineers, knowledgeable in optimization, to
soliecit their input. This did not prove to
be beneficial because no usable knowledge was
returned. This could be attributed to the
fact that many of the engineers surveyed use
only one combination, and use it as a
"black-box." The main benefit from the
questionnaire was that it reinforced our
belief that an expert system would be very
beneficial to most engineers using ADS. The
remainder of the knowledge that currently
resides in the knowledge base came from two
primary sources. First, the second author
performed a literature search to identify
rules for each strategy, optimizer, and
one-dimensional search option in ADS.
Second, the developer of ADS included a set
of rules in his documentation (ref. 1). The
collection of rules from these sources
provided sufficient rules to begin developing
the expert system.

THE EXPERT SYSTEM FOR ADS

EXADS, the expert system developed for
ADS, like most expert systems, consists of
two major components, an inference engine and
a knowledge base. These two components are
discussed in detail in this section.

The Inference Engine

The inference engine described in
reference 4 was used to help us get started
with this project. This engine i{s written in
LISP. Users respond to a question with
either a "yes" or a "no.® This proved to be
very helpful in learning some of the basics
about building expert systems with production
(if-then) rules. However, the inference
engine lacked some useful capabilities, such
as confidence levels and dealing with
uncertainty. About the time a search was
begun to find or develop a new inference
engine, one, which appeared to meet our
needs, was delivered to another organization
at Langley. This engine, called AESOP (An
Expert System engine Operative with
Probabilities), was developed under a NASA
grant. AESOP is a rule-based inference
engine written in LISP which can make
decisions about a particular situation using
user-supplied hypotheses (potential
solutions), rules (guidelines to'rindlng the
correct solution), and answers to the
questions drawn from the rules. It is a
backward chaining problem solver, i.e. works
from hypotheses to facts.

One of the important features of AESOP
1s that questions do not have to be answered
with only a "yes" or a "no", A confidence
level ranging from 0 (no) to 10 (yes) may be
given instead, depending upon how certain the
user is about a particular piece of
information. The user can also respond with
a "maybe" (5), "probably" or "likely" (7),
"not-likely" (3), or "don't know" (dk). 1Ir
the user responds "dk", AESOP checks the
knowledge base to determine if rules exist
that deal with this uncertainty. The n"dk"
capability is very powerful, allowing several




levels of rules to exist with each level
containing more specific rules to help decide
the appropriate response to a higher level
question. The rules must be structured
top—down so that the rules for resolving a
"dk" response are located below the original
rules because AESOP will not jump backwards
through the rules to resolve a "dk" response.
If no rules exist for resolving a "dk"
response, the default is "no.™ However, the
user is given an opportunity to override the
default.

AESOP has an "explanation" feature and a
"help" command. When any hypothesis reaches
a confidence level of 90% or more, it is
deemed confirmed as the best choice and
displayed to the screen. If all rules have
been exhausted and no hypothesis has been
confirmed, then the status of all hypotheses
with a confidence level greater than 10% are
displayed on the screen. The user can choose
a combination of options based on the
confidence levels or examine the explanation
of the hypotheses that appear promising and
determine why they failed to reach the 90%
level. The "help" command displays the
choices currently available to a user.

Other reasons for choosing AESOP are its
availability and its portability. The
program is in the public domain and available
from COSMIC, NASA's software dissemination
center at the University of Georgia. It
executes on both the DEC-VAX (Franz LISP) and
the IBM PC/XT (IQ-LISP) at Langley, and
should be portable to any computer running a
version of LISP with little or no
modification.

The Knowledge Base
The knowledge base contains: (1) the

rules to be used in the decision making; (2) -

the hypotheses to be investigated; (3) the
list of mutually exclusive rules (opposites)
to avoid giving essentially the same
information twice; and (4) detailed
information about specific rules. The
general format of the knowledge base is:

(setq *rules '(
((hypothesist)
(or
(confidence~levell rulet)
(confidence-level2 rule2)

(confidence-levelN ruleN))
((hypothesis?2)

((hypothesisN)
(or
(confidence-levell rulel)
(confidence-level2 rule2)

(confidence-levelN ruleN))))

(setq *hypotheses '(
(hypothesist)
(hypothesis2)

(hypéthesisN)))

(setq *opposites '(
((ruleA) (ruleB))
((ruleC) (ruleb))

((ruleY).(ruleZ))))

(setq *details '(
((ruleA) (details about rulea))
((ruleB) (details about ruleB))

((rulez).(details about rulez))))

The confidence level assigned to each
rule by the expert works in conjunction with
the confidence level the user expresses about
how well the rule applies to his or her
problem. This combination is divided by 10
before it is stored. For example, if the
expert has placed a confidence level of 8 on
a rule and the user responds to a qQuestion
about that rule with a confidence level of S,
then the combined confidence level is
(8%5)/10 or 4. The confidence level for the
hypothesis is computed by again dividing by
10 resulting in a value between 0 and 1 given
as a percentage. When this confidence level
exceeds 90%, the hypothesis is deemed
confirmed as the best choice. The rules can
be expressed in two ways, as "and" or as
"or." An example of an "and" rule follows:

((strategy 1 optimizer 2 and 1d-search 3
is best for ¥)
(or
(10 and (* requires a strategy of 1)
(* requires an optimizer of 2)
(* requires a 1d-search of 3))))

The * serves as a "wild card" for describing
the problem on which the user is working and
is discussed in more detail below. The 10
shows that the expert s certain that this
hypothesis is correct if the facts enclosed
in the parentheses are true. The user
responds with a confidence level to each of
the three questions included in the "and"
portion of the rule. For example, the engine
would ask: "Does * require a strategy of 17"
The user responds "1" (or likely or 7). 1If
the user responds "y" (yes or 10) to the
remaining two questions, the 10 preceding the
"and" would only be multiplied by 7 because
in an "and" rule the engine chooses the
minimum of all responses. After the two
divisions by 10 the confidence level for this
hypothesis is at 70%.




An "or" rule looks like the following:

((* requires a strategy of 4)
(or .

(8 * requires starting from a feasible
design space)

(7 * is a second order problem)

(6 * has more than 50 design variables)

(5 analytical gradients are available
for ¥*)))

Each of the "or" rules works in combination
with the others. A confidence level is
computed for the first rule by multiplying
the confidence level of the expert by the
confidence level of the user and dividing by
10. The confidence level of the second rule
is computed likewise. These two confidence
levels are then combined according to the
computation

new_confidence = confidencel +
((1-confidencel) * confidence2)

This combinatorial process (replacing
confidencel with new confidence and
confidence2 with the confidence level of the
next rule) is repeated until all of the rules
In the "or" have been used or, after another
division by 10, a 90% confidence level has
been attained for that hypothesis.

AESOP allows the knowledge engineer to
store an initial prompt function in the
knowledge base. This function, which is
contained on a file loaded into memory by the
inference engine, lets the user describe the
problem being solved (ex. building-bridges).
This description replaces the wildeard (¥) in
the remainder of the knowledge base.

PROBLEMS ENCOUNTERED AND THEIR SOLUTIONS IN
DEVELOPING THE EXPERT SYSTEM i

Testing and verification of the
knowledge base proceeded along several
different lines. First, the authors tried
numerous test cases to test the validity of
the rules and the associated confidence
levels. This step eliminated most of the
simple problems and errors. Next five
students taking a graduate level optimization
course were invited to test the system.

These students each had an optimization
problem to solve and used EXADS as would a
typical optimization novice. They responded
to questions with answers based on their
particular problem. In two cases, a
combination of options for ADS was deemed
confirmed as the best choice for that
student's problem. In the other three cases,
no hypothesis was confirmed, but the students
were given 2-4 combinations from which to
choose. New problems were discovered and
solved at this step also. Finally, the EXADS
system will be sent to ADS users for testing
and evaluation in the field. It {s expected
that new and modified rules and confidence
levels will be added as a consequence of the
evaluation by the ADS users.

The remainder of this section discusses
the problems discovered by the authors and
the students during the first two levels of

testing and evaluation. The solutions to
these problems are also discussed because
these problem solving experiences may be
important to potential developers of expert
systems.

The original knowledge base contained 98
hypotheses (the possible combinations for
ADS) and about 550 rules in a single file.
Many of the "or" rules were combined into
"and" rules, thereby reducing the total
number of rules to near 200. AESOP works
with frames (ref. 4). A frame is a list of
properties about an entity, similar to
relations and attributes in a relational data
base management system. To reduce the
excessive amount of time AESOP was taking to
create the frames, it was decided to divide
the rules into three separate categories
depending upon whether the problem to be
solved is unconstrained, constrained, or
constrained but being treated as
unconstrained. The rules corresponding to
each category were then written as separate
files. The possible combinations do not
overlap among these files, although many of
the rules do. 1In addition to reducing the
amount of time to generate the frames, the
user is not asked questions that cannot
possibly pertain to the problem.

To handle these three categories of
problems, the initial prompt function was
expanded to ask additional questions about
which category is to be used. Once the
category is determined, then the appropriate
file is loaded from the knowledge base.

After initialization of certain variables,
the initial prompt function queries the user
for a description of the problem to be
solved. This description replaces the "#n
wildeard in the rules as before. A diagram
of EXADS is shown in figure 1. Because the
inference engine, the knowledge base, and the
initial prompt function are all written in
LISP, there is no way to distinguish among
the three once all of the files are loaded
into memory.

Because of the way the original AESOP
system was written, the user was required to
answer redundant questions. "Remember" and
"recall™ features from the inference engine
in reference 4 were added to AESOP to let the
inference engine store and recall user
responses thus minimzing the number of
questions a user is asked. 1In addition,
there are a number of rules in the knowledge
base which are exact opposites, such as
(iterative analysis is available for *) as
opposed to (iterative analysis is not
available for *). An "opposites" feature was
added so that the user would not be asked
about both rules. Using this feature, when a
user responds to a question and its opposite
1s in the knowledge base, the corresponding
inverse confidence level is given to its
opposite. For example, if a user responds
"probably" (7) to a question, then its
opposite is automatically given a.
"not-likely" (3) confidence level. The
students found that responding to rules
stated negatively proved to be a problem.
The addition of the "opposites™ feature and a
slight reordering of the rules and hypotheses




seems to have helped here because, except in
rare occasions, the user now only sees a
positively stated question. .

The addition of the "opposites" feature
to AESOP led to a problem with the default of
"no" for a "dk" (don't know) response. Since
"dk" defaults to a "no," its opposite
defaults to a "yes" without the user ever
seeing the question. Obviously the opposite
of "dk" is not "yes." The engine was
modified so that the opposite of "dk" is
"dk," with both defaulting to ™no." A feature
to allow the user to override the default was
added.

The authors found that the "explanation"
feature tended to generate quite a bit of
output that really did not help in
understanding what rules were being used to
find the best combination. All combinations
of strategy, optimizer, and one-dimensional
search options with their rules were
displayed even though there may have been no
evidence that that combination was best. To
reduce the amount of output, only hypotheses
and rules having a confidence level of
greater than 10% are now displayed,
eliminating the hypotheses and rules with
little or no evidence.

Because some users may not be familiar
with the optimization terminology used in the
rules, a "detail" feature was added. This
feature allows users to type "detail" if they
do not understand a rule, .and details for
that rule are displayed on the screen if they
are available in the knowledge base.

CONCLUDING REMARKS

An expert system, called EXADS, has been
developed to aid a user of the Automated
Design Synthesis (ADS) general-purpose
optimization program. Because of the
general-purpose nature of the program, it is
difficult for a non-expert to select the best
choice of a combination of strategy,
optimizer, and one-dimensional search options
from among the many combinations which are
available. An expert system for ADS (EXADS)
consisting of an inference engine (AESOP),
and a knowledge base of approximately 200
rules was developed to aid an engineer in
determining the best combination based on the
his or her knowledge of the problem and the
expert Knowledge stored in the knowledge
base. After in-house testing and
verification, EXADS is to be delivered to ADS
users for their evaluation. After their
evaluation, the system will be modified to
correct any errors, problems, or "holes" in
the knowledge base. It will then be expanded
periodically to account for any new ADS
options.
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Table 1: Strategy Options

No. Strategy To Be Used

0 None. Go directly to optimizer.

1 Sequential unconstrained minimization
using the exterior penalty function
method. ) '

2 Sequential unconstrained minimization
using the linear extended interior
penalty function method.

3 Sequential unconstrained minimization
using the quadratic extended interior
penalty function method.

y Sequential unconstrained minimization

using the cubic extended interior

penalty function method.

Augmented Lagrange Multiplier method.

Sequential linear programming.

Method of centers (method of inscribed

hyperspheres).

Sequential quadratic programming.

(o] ~Nonu;

Table 2: Optimizer Options

No. Optimizer To Be Used

0 None. Go directly to the search,

This option should only be used for
program development.

1 Fletcher~Reeves algorithm for
unconstrained minimization.

2 Davidon-Fletcher-Powell.(DFP) variable
metric method for unconstrained
minimization.

3 Broydon-Fletcher-Goldfarb-Shanno (BFGS)
variable metric method for unconstrained
minimization.

4  Method of feasible directions (MFD) for
constrained minimization.

5 Modified method of feasible directions
for constrained minimization.

Table 3: One-dimensional Search Options

No. One-dimensional Search To Be Used

1,5 Find the minimum of an (1) unconstrained
or (5) constrained function using the
Golden Section method.

2,6 Find the minimum of an (2) unconstrained
or (6) constrained function using the
Golden Section method followed by
polynomial interpolation.

3,7 Find the minimum of an (3) unconstrained
or (7) constrained function by first
finding bounds and then using
polynomial interpolation.

4,8 Find the minimum of an (4) unconstrained
or (8) constrained function by
polynomial 1nterpolat1on/extrapolation
without first finding bounds on
the solution.



Table 4: Program Options

OPTIMIZER

STRATEGY 1 2 3 y 5
o] X X X X X
1 X X X 0 0
2 X X X 0 0
3 X X X 0 0
4 X X X 0 0
5 X X X 0 0
6 0 0 0 X X
7 0 0 ] X X
8 0 0 ] X X

ONE-D SEARCH
1 X X X 0 0
2 X X X 0 0
3 X X X 0 0
4 X X X 0 0
5 0 ) 0 X X
6 0 0 0 X X
7 0 0 0 X X
8 0 0 0 X X

Knowledge base
Constrained Unconstrained Constrained tr.eated
rule file rule fite as uncon.stramed
rule file
: A i
User Replace « with
L el
description of problen,
Inference /
L engine o Typeof Initialize and load |

(AESOP) problem rule file

Initial prompt function

Figure 1: Diagram of EXADS
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