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SUMMARY

Implementation of the Tridiagonal Reduction method in Level 16 of NASTRAN

for real eigenvalue extraction in structural vibration and buckling problems

is described. The basic concepts underlying the method are summarized and

special features, such as the computation of error bounds and default modes of

operation are discussed. In addition, the new user information and error

messages and optional diagnostic output relating to the Tridiagonal Reduction

method are presented.

Some numerical results and initial experiences relating to usage in the

NASTRAN environment are provided, including comparisons with other existing

NASTRAN eigenvalue methods.

INTRODUCTION

The Tridiagonal Reduction or FEER method is based on an efficient algo-

rithm which extracts eigensolutions in the neighborhood of a specified shift

point in the eigenspectrum from a tridiagonal eigenvalue problem of highly

reduced order. In essence, the size of the reduced problem is of the same

order of magnitude as the number of desired roots, even when the fully dis-

cretized system possesses many thousand degrees of freedom. The computational

scheme employed is basically a truncated version of the Lanczos Algorithm

(ref. i) as first proposed by Crandall (ref. 2), but its present level of per-

formance derives from a series of improvements and numerical refinement which

were started back in the late 1960's by Ojalvo and Newman (ref. 3) and sub-

sequently developed into large-scale computational programs of general utility

(refs. 4, 5, and 6).

The Tridiagonal Reduction method employs only a single, initial shift of

eigenvalues and hence usually requires only one matrix decomposition. It con-

sequently tends to be much more efficient than the inverse power method when

many eigensolutions are required.
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The version of the Tridiagonal Reduction method reported on here is the
one implemented in Level 16 of NASTRANfor real eigenvalue extraction in
structural vibration and buckling problems. The basic concepts underlying the
method are summarizedonly briefly, since a more thorough exposition of the
theoretical aspects are available in reference 7. The major emphasis of this
paper is directed toward describing the features of this new capability in
NASTRAN,outlining user procedures, and reporting on initial experiences
relating to its usage in the NASTRANenvironment.

PRELIMINARYOPERATIONS

The problem is to find a specified number of real eigenvalues, %a, and
corresponding eigenvectors, {_}, for

[K - % M]{@} = 0 (i)a

It is further required that these eigensolutions constitute a set lying
closest to a specified point, %o, in the eigenspectrum.

The definitions of the eigenvalue, the matrices [K] and [M], and their
mathematical properties, depend on the type of problem being solved. For real
analysis, only two separate problem types need be considered: structural
vibration and buckling problems. The matrix definitions and mathematical
distinctions for these two cases are summarizedin table I.

The essential differences between the two types of problems center around
the properties of the [M] matrix, which is nonnegative for vibration mode
problems, but indefinite for buckling problems, thereby permitting the exist-
ence of both positive and negative eigenvalues in the latter case. In addi-
tion, the stiffness matrix may be singular for vibration problems while it is
always positive definite in buckling applications, which implies that the buck-
ling analysis is performed on a kinematically stable structure.

Further, if the user requests vibration modesin the neighborhood of a
specified frequency, _o, equation (1) can be written as

[K]{@} = %, [Maa]{@} (2)

where

2
[K] = [Kaa - _o Maa] (3a)

and

2 2
- _ (3b)

O

The resulting effective stiffness matrix, [K], is indefinite in this case,

since it possesses both positive and negative eigenvalues. This requires that
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anon-square root decomposition schemebe used in subsequent operations. How-
ever, _o = O is taken as a default value, or it may be specified by the user.
In this case, a specified numberof natural frequencies starting with the low-
est will b_ computed. In order to utilize a more efficient Cholesky decomposi-
tion of [K] under these conditions, a small negative shift %o= __2 is used
yielding

[_] = [Kaa + 2 Maa] (4a)

and

%, = 2 + 2 (4b)

The resulting effective stiffness matrix [K] is positive definite thereby
allowing a square-root decomposition to be performed when the roots are com-
puted in the neighborhood of zero. Since no shifting is performed in buckling
problems, the effective stiffness matrix is [K] = [Kaa], which is always
positive definite, again permitting the use of a Cholesky decomposition.

In any event, a decomposition or factoring of [K] is next performed:

[K] = [L] _dJ[L] T (shifted vibration modeproblems) (Sa)

or

[K] = [C]i[C]T (buckling problems
or vibration modes
in the neighborhood
of zero desired)

(5b)

where [L] and [C] are lower triangular factors and _d_ is a diagonal

matrix.

To facilitate computation of eigenvalues closest to the point of interest

within the eigenspectrum, inverse forms of the eigenvalue problems are employed.

The general form of the inverse problem may be written as

[B][X] = A[D][X] (6)

where the above terms are defined in table II.

THE REDUCTION ALGORITHM

A reduction of the order of the above eigenvalue problem is effected

through the transformation

{X} = [V] {y} (7)

nxl nxm mxl
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where {X} is an approximation of {X}, n is the order of the unreduced
problem, and m < n. The transformation matrix is taken to be orthonormal to

[D] so that

[V] T [D][V] = [I] (8)

From equations (6), (7), and (8) it is seen that

[A] {y} = A{y} (9)

where

and

[A] = [V] T [B][V] (i0)

m_xm

is an approximation of the eigenvalue, A.

Thus, equation (9) is an m + n order eigenvalue problem where m < n.

The essence of the reduction scheme lies in the choice of the transformation

matrix, [V]. In the present case, the Lanczos algorithm is used to build up

the [V] matrix, vector by vector, that is,

IV] = [{vi}{v2} .{Vm}] (ii)
nxm

such that the reduced mxm matrix [A] is tridiagonal and its eigenvalues

accurately approximate the roots of the physical model closest to the specified

point of interest in the eigenspectrum.

IV]
The theoretical recurrence formulas for generation of the columns of the

matrix are

a = {vi}T 1

i,i [B]{v}

#_ T rn1-1 ro_I.. ] _ a. {v.} "

"'i+l" = L_, t_J Lvi i,i i - aitVi-ll I
di+ I = [{_i+l }T [D]{Vi+l}] I/2

i = l,m (12a)

{Vi+l} = i {_i+l} ; i = I, m - 1 (12b)
di+ 1

where the sequence is initialized by choosing a random starting vector for

{v i} and setting d i = 0, {vo} = {0}. In order to prevent numerical drift in

the computations, each vector, {Vi+l} , is reorthogonalized to all previously

computed {v} - vectors before reentering equation (28a).

Again, the reader is referred to reference 7 for a more complete discussion

of the underlying theoretical and numerical details.

130



The eigenvalues, A, and eigenvectors, {y} of equation (9) are extracted
using a Q - R algorithm and eigenvector computational procedure similar to
that employed in the Givens method. They are then converted to physical form
as follows:

_i = - I__ (buckling problems) (13a)

- 2 i 2
_0. - - (unshifted vibration

modeproblems)
(13b)

- 2 1 2
60. =--+0o
1 _. o

1

(shifted vibration

mode problems)

(13c)

{$i } = [c-l] T [V]{y i} (buckling or unshifted (13d)

vibration mode problems)

{$i } = [V]{y i} (shifted vibration
mode problems)

(13e)

SIZE CRITERIA FOR THE REDUCED EIGENPROBLEM

The total number of eigensolutions is equal to the rank, r, of the [M]

matrix. Thus, the size of the reduced problem, m, cannot be greater than r.

If, in addition, f eigensolutions have previously been computed by NASTRAN

(modes generated prior to a restart plus rigid body modes generated by using a

SUP_RT card in the bulk data deck), these must be swept out of the problem by

making all the {v} vectors orthogonal to the previously computed eigenvectors.

This implies that the maximum size of the reduced problem is further reduced to

= r - f (14)

As a result of numerical experiments, it has been found that in cases where

m << r, a first grouping of more than m/2 eigenvalues closest to the shift

point are in accurate agreement with the corresponding number of exact eigen-

values. The remaining reduced-system roots are spread across the remaining

exact eigenspectrum.

In view of the above considerations, the order of the reduced problem

solved by NASTRAN is

m = min [(2q + i0), r] (15a)

where

= q - f (15b)
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and q is the total number of eigenvalues requested by the user. The value
"i0" appearing in equation (15a) is somewhatconservative and was adopted to
improve the accuracy of the user-requested eigenvectors, which tend to deterio-
rate more rapidly than the eigenvalues. However, if the user is not too con-
cerned with the eigenvectors farthest removedfrom the shift point, he can
reduce the problem size and decrease the run time by requesting a smaller value
of q on the EIGRor EIGBbulk data card, with the assurance that in almost all

m

cases, at least q + 5 accurate eigenvalues will be computed by the Tridiagonal

Reduction method.

ERROR BOUNDS ON THE COMPUTED EIGENVALUES

The maximum absolute relative errors in the computed physical eigenvalues

(see ref. 7) are obtained from

i - %ai_I _ _ ; i = i, m (16)
I%i (i + %o Ai) 1

where %ai is an exact system root, Ymi is the last element of the reduced-
system eigenvector corresponding to _ai and ko is the shift point. Thus,

it is seen that the eigenvalue errors are all proportional to dm+l, which is

the next off-diagonal term that would be generated, had the reduced tridiagonal

matrix, [A], been increased from order m to order m + i.

If the physical eigenvalue, i/Ai + %o, corresponds to a rigid body mode,

the above computation is invalid and therefore bypassed. A rigid body mode is

assumed to occur whenever

where t is the number of decimal digits carried by the computer.

case, the relative error is set to a flat zero.

(17)

In this

The eigenvalues are processed in order of increasing distance from the

center of range of interest, %o, to determine whether their associated error

values meet an acceptable tolerance set by the user on the EIGR or EIGB bulk

data card (the default value is 0.O01/n percent. The first eigenvalue not

meeting this tolerance test, as well as all subsequent eigenvalues farther

removed from the center of interest, are considered to lack sufficient accuracy

and are therefore rejected. Finally, acceptable eigenvalues obtained in the

above manner are reordered in terms of increasing physical value for subsequent

processing by NASTRAN.
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NASTRANUSER'SINSTRUCTIONS

Figures i and 2 show modifications of the EIGRand EIGBcards in the
NASTRANbulk data deck which accommodateuser implementation of the Tridiagonal
Reduction method for real eigenvalue analysis. The modifications are consti-
tuted of additions to the standard user instructions and are underscored for
ease in identification.

Whenthe Tridiagonal Reduction method is invoked, the F2 or L2 param-
eter on these cards represents the maximumallowable value of the computed
relative error in a physical eigenvalue. If this value is exceeded the asso-
ciated eigensolution is not accepted for further processing by NASTRAN.A
detailed list of the maximumrelative errors in the computedeigenvalues can be
obtained by requesting DIAG16 in the NASTRANExecutive Control Deck.

USERMESSAGESANDOPTIONALDIAGNOSTICS

Functional Module User Messages

The following is a description of the NASTRANuser messageswhich maybe
generated by NASTRANduring the execution of the Tridiagonal Reduction method
and which are unique to this method. Explanatory information is provided
following the text of each messageand, in the case of a fatal message, cor-
rective action is indicated. Refer to the NASTRANUsers' Manual, Section 6,
for a complete listing of other system and user messages.

Fatal messagescause the termination of the execution following the print-
ing of the messagetext. Thesemessageswill always appear at the end of the
NASTRANoutput. Warning and information messageswill appear at various places
in the output stream. Suchmessagesconvey only warnings or information to the
user. Consequently, the execution continues in a normal manner following the
printing of the messagetext.

2385***

2386***

MessageList

USERWARNINGMESSAGE2385, DESIREDNUMBER@FEIGENVALUESEXCEED
THEEXISTINGNUMBER,ALL EIGENS@LUTI@NSWILL BE S@UGHT.

The desired numberof eigenvalues specified on the EIGRcard
(NEP) or the EIGRcard (ND) exceeds the rank of the [K_a] or
[Maa] matrix, which is the maximumnumberof existing eigenvalues.

USERFATALMESSAGE2386, STIFFNESSMATRIXSINGULARITYCANN@TBE
REMOVEDBY SHIFTING.

Check the specification of masseson C@NMI,C_NM2,CMASSi,
material definition and element property cards to insure that the
degrees of freedom in the analysis set are not all massless.
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2387*** USERWARNINGMESSAGE2387, PROBLEMSIZE REDUCEDT_ **** DUET_
_RTH_G_NALITYDRIFT_R NULLTRIAL VECTOR.ALL EXISTINGMODES
HAVEBEEN_BTAINED. USEDIAG16 T_ DETERMINEERRORB_UNDS.

The Tridiagonal Reduction method cannot generate a reduced
problem size of the order prescribed in Section 10.6.2.3 of the
Theoretical Manual. However, the desired numberof accurate
eigenvalues specified on the EIGB card (NEP)or the EIGRcard
(ND) may have been obtained. A detailed list of the computed
error bounds can be obtained by requesting DIAG16 in the
EXECUTIVEC_NTR_LDECK.

2388*** USERWARNINGMESSAGE2388, USERSPECIFIEDRANGEN_TUSEDF_R
FEERBUCKLING,THER@@TS@FL_WESTMAGNITUDEARE_BTAINED.

The value of L1 specified on the EIGBcard is ignored for
buckling analysis by the Tridiagonal Reduction (FEER)method.

2389*** USERWARNINGMESSAGE2389, PROBLEMSIZE REDUCED.N_M_RETRIAL
VECTORSCANBE _BTAINED.

The desired numberof eigenvalues specified on the EIGBcard
(NEP) or the EIGRcard (ND) exceeds the number that can be
calculated by the Tridiagonal Reduction (FEER)method. Check
whether the requested numberof eigenvalues exceeds the rank of
the [K_a] or [Maa] matrix, which equals the numberof existing
eigenvalues.

2390*** USERWARNINGMESSAGE2390, **** FEWERACCURATEEIGENS_LUTI_NS
THANTHE**** REQUESTEDHAVEBEENFOUND. USEDIAG16 T_
DETERMINEERRORB_UNDS.

The numberof eigenvalues passing the eigenvalue relative-error
test is less than the numberrequested on the EIGBor EIGRcard.
The maximumallowable error .....i__p_A_ _ f_=_u 5 o_ the above
cards. A detailed list of the computederror bounds can be
obtained by requesting DIAG16 in the EXECUTIVEC@NTROLDECK.
A checkpoint and restart should be employed to obtain additional
accurate eigensolutions.

2391"** USERFATALMESSAGE2391, PROGRAML_GIC ERRORIN FEER.

An unexpected E@For word count has been encountered.

2392*** USERINFORMATIONMESSAGE2392, **** M_REACCURATEEIGENS_LUTI_NS
THANTHE**** REQUESTEDHAVEBEENFOUND.USEDIAG16 T_ DETER-
MINEERRORB_UNDS.

The numberof eigenvalues passing the eigenvalue relative-error
test is greater than the numberrequested on the EIGBor EIGR
card. The maximumallowable error is specified in field 5 on
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2393***

the above cards. A detailed list of the computederror bounds
can be obtained by requesting DIAG16 in the EXECUTIVEC_NTR_L
DECK.

USERWARNINGMESSAGE2393, THEREDUCED-SYSTEMEIGENVECT_R
C_RRESP_NDINGT_ EIGENVALUE**** D_ESN_TMEETC_NVERGENCE
CRITERION. ABSOLUTERELATIVEERRORBETWEENSUCCESSIVE
ITERATESIS ****.

The accuracy of the corresponding physical eigenvector is in
doubt. Refer to the Eigenvalue SummaryTable for the largest
error in the generalized massmatrix.

The Eigenvalue SummaryTable

The following summaryof the eigenvalue analysis performed is automatically
printed when rigid formats using the Tridiagonal Reduction (FEER)method are
invoked:

i. The numberof eigenvalues extracted.

2. Numberof starting points used.

This corresponds to the total number of randomstarting and
restart vectors used by the FEERprocess.

3. Numberof starting point moves.

Not used in FEER(set equal to zero).

4. Numberof triangular decompositions.

Always equal to one, except for unshifted vibration problems
(roots starting from the lowest requested). In this case, a
maximumof three shifts and three decompositions are employed
to remove possible stiffness matrix singularities.

5. Total numberof vector iterations.

The total numberof reorthogonalizations of all the trial
vectors employed.

6. Reason for termination.

(0) Normal termination.

(i) Fewer than the requested number of eigenvalues and eigen-
vectors have been extracted.
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(3) The problem size has been reduced. However, the desired

number of accurate eigensolutions specified on the EIGB

or EIGR card may have been obtained. A detailed list of

the computed error bounds can be obtained by requesting

DIAG 16 in the EXECUTIVE C_NTR_L DECK.

Largest off-diagonal modal mass term and the number failing the mass

orthogonality criterion.

Optional Diagnostic Output

The user can obtain special detailed information relating to the genera-

tion of the reduced problem size, the elements of the reduced tridiagonal

matrix, computed error bounds, and other numerical tests by requesting DIAG 16
in the NASTRAN Executive Control Deck.

The meaning of this information is explained below in the order in which

it appears in the DIAG 16 output.

#RDER - The order of the unreduced problem (size of the [Kaa ]
matrix)

MAX RANK-

RED CRDER

- The maximum number of existing finite eigensolutions as

initially detected by FEER

- The order of the reduced eigenproblem which will be solved

to obtain the number of accurate solutions requested by
the user

_RTH VCT - The number of previously computed accurate eigenvectors on

the eigenvector file which were generated prior to a

restart or by the NASTRAN rigid body mode generator

USER SHIFT - Used on]v in Frpn,1_nrv nrnNl=m= T_ .......... "_'_ -n-'r_

after conversion from cycles to radians - squared

INTERNAL SHIFT - Used only in frequency problems. A small positive value

automatically computed to remove singularities if the user

has specified a zero shift. Otherwise, the negative of the
user shift

SINGULARITY,CHECK - PASS:

_:
the shifted stiffness matrix is nonsingular

the number of internal shifts needed to remove

stiffness matrix singularities

TRIDIAG_NAL ELEMENTS R_W j, **, ***, **** - Lists the computed tridiagonal

elements of the reduced eigenmatrix:
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_RTH ITER

MAX PR_J

- The number of tlmes a reorthogonalization of a trial vector

has been performed

- The maximum projection of the above trial vector on the

previously computed accurate trial vectors (prior to the

current reor thogonalization)

N_RMAL FACT - The normalization factor for the reorthogonalized trial

vector

_PEN C_RE N_T USED *** FEER 3 - Open core not used by Subroutine FEER 3, in

single-precislon words

FEER QRW ELEMENT *, ITER **, ***, RATIO ****, PR_J *****:

- The internal eigenvalue number in the order of its extrac-

tion by FEER

- The number of inverse power iterations performed to extract

the associated eigenvector of the reduced system (this is

not a physical eigenvector)

- If a multiple root has been detected, the number of times

that the previous multiple-root, reduced-system eigenvectors

have been projected out of the current multiple-root eigen-

vector before repeating the inverse power iterations

- The absolute ratio of maximum, reduced-system eigenvector

elements for successive inverse power iterations

- The maximum projection of a current multiple-root eigen-

vector on previously computed eigenvectors for the same

root

PHYSICAL EIGENVALUE *, **, TflE_R ERROR *** PERCENT', PASS OR FAIL:

- The internal eigenvalue number in the order of its

extraction by FEER

- The associated physical eigenvalue (% for buckling prob-

lems, _2 for frequency problems)

- Theoretical upper bound on the relative eigenvalue error,

in percent

PASS - The computed error is less than or equal to the allowable

specified on the EIGB or EIGR bulk data card (default is

0.O01/n percent, where n is the total number of uncon-

strained degrees of freedom)

FAIL - The computed error is greater than the allowable and this

mode is not accepted for further processing
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_PEN C_RE N_T USED *** FEER 4 - Open core not used by Subroutine FEER 4, in

single precision words

FEER C_MPLETE *, **, ***, ****

- The remaining CPU time available following decomposition of

the shifted stiffness matrix, in seconds (the total time is

specified on the TIME card in the Executive Control Deck)

- The remaining CPU time, in seconds after completing

Subroutine FEER 3

- The remaining CPU time, in seconds after completing

Subroutine FEER 4

- The total operation count for FEER after decomposition of

the shifted stiffness matrix. One operation is considered

to be a multiplication or division followed by an addition

COMPARISON OF FEER WITH EXISTING NASTRAN EIGENVALUE METHODS

The _{IG helicopter three-dimensional built-up dynamic model was chosen

for the comparison because it represented a moderately large, "real-world"

problem. The order of the stiffness matrix was 1706, while its maximum rank

was 1277. In addition, the average number of active columns (CAVG) per pivot

row was 81. During the original analysis of the problem, the GIVENS method

was used and 30 eigenvectors were found. Therefore, for comparison purposes,

30 eigenvalues were requested in runs 2-6 as shown in table III. The problem

size for the GIVENS run, however, was reduced to 241 by using OMIT BULK DATA

cards. A series of eight test cases were run. Each case was executed on a

CDC 6600 computer in 164K 8 core (except run 6 which used 230K8). The only

changes made to the input deck were to the EIGR card. The first six eigen-

values found in each run were the rigid body mode_. The timing results for

these tests are shown in table III.

In runs 1-3 where OMIT cards were used, the obvious choice is the GIVENS

method, since the other two methods require twice as much CPU time and get

fewer eigenvalues. FEER reduced the problem order to 58, while the other two

methods worked with an order of 241. The 30 eigenvalues found agreed exactly

for all tt_ree methods, while the 30 eigenvectors from each method agreed to the

fourth significant digit. The eigenvectors were all normalized to MAX by the

EIGR card.

In runs 4-5 no OMIT cards were used and, therefore, the problem size (1706

degrees of freedom) was too large to use the GIVENS method. FEER showed a

significant speed advantage over the INVERSE POWER method. In fact, the

INVERSE POWER problem terminated after finding only 22 eigenvalues because of

insufficient time to calculate another root and no eigenvectors were obtained.

It is therefore reasonable to estimate that FEER (run 4) was at least twice as

fast as the INVERSE POWER method (run 5). In each of these runs, since no OMIT
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cards were used, no time was spent in modules SMPI and SMP2. This reduced the

total run time. FEER again reduced the problem order to 58, while INVERSE

POWER worked on a problem size of 1706. The first 22 elgenvalues found in

these two runs agreed to the fifth or sixth significant digit. No elgenvectors

were printed for run 5 (INVERSE POWER), thus no comparison was made. The

following llst shows how the eigenvalues found in run 4 differ from the elgen-
values found in run i.

Mod e

No.
Eigenvalues from

FEER with no OMITS
Eigenvalues from
GIVENS with OMITS

1 0.0 0.0

2 0.0 0.0

3 0.0 0.0

4 0.0 0.0

5 0.0 0.0

6 0.0 0.0

7 3. 607787E+02 3. 607830E+02

8 4. 359254E+02 4. 359756E+02

9 I. 936684E+03 i. 936968E+03

i0 2. 469448E+03 2. 469903E+03

ii 7.174892E+03 8. 380196E+03

12 8. 765565E+03 8. 954930E+03

13 i. 020949E+04 i. 056439E+04

14 I. 066561E+04 i. 174620E+04

15 i. 173722E+04 i. 273280E+04

16 I. 497434E+04 i. 512035E+04

17 I. 511484E+04 i. 553434E+04

18 i. 632569E+04 i. 646955E+04

19 I. 960200E+04 2.166074E+04

20 2. 235550E+04 2 .253426E+04

21 2. 367533E+04 2.371600E+04

22 2. 391382E+04 2.445306E+04

23 2. 441746E+04 2. 556377E+04

24 2. 627131E+04 2. 869502E+04

25 2. 864655E+04 3. 245894E+04

26 3. 612023E+04 4,061178E+04

27 4. 052112E+04 4. 249005E+04

28 4. 220211E+04 4. 612667E+04

29 4. 488473E+04 5. 430758E+04

30 4. 600289E+04 5.673561E+04

Significant differences can be seen between the two sets of eigenvalues

beyond the fourth nonrigid body mode. Similar differences occurred for the

eigenvectors. These results indicate that the engineer must seriously consider

whether the savings in CPU time achieved by using the Guyan Reduction method

(OMITS) are worth the price paid in loss of accuracy or, at best, doubtful

accuracy in the results. Run 6 was an additional run using FEER with no OMIT

cards, but with the storage increased from 164K 8 to 230K8, to see if the

increased core would decrease the run time for a problem of this size. This

was not the case. Runs 2, 4, and 6 show that no matter which core size was
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used or even whether or not OMITcards were used, the CPUtime in the READ
module remains more or less constant.

A final pair of runs (7 and 8) were madeto determine the effect of
extracting only half (15) of the eigenvalues of the previous runs. For this
case, FEERis 65 percent faster than INVERSEPOWERand 32 percent faster than
the total time for GIVENSwith omits in run i. In run 7, FEERused a reduced
order of 30. INVERSEPOWERmethod, however, missed six lower eigenvalues in
the frequency range selected (0 to 500 cycles). Comparisonof the eigenvectors
to those in runs 4 and 5 reveal that the eigenvectors found by INVERSEPOWERin
run 8 agreed with the eigenvectors of both run 4 and run 5. The first i0 eigen-
vectors (including the six rigid body modes) found by FEERin run 7 agreed to
significant digits with the first i0 eigenvectors found in run 4, after which
the eigenvectors in run 7 deteoriated quickly.

CONCLUDING REMARKS

The GIVENS method, using the. OMIT feature in NASTRAN, demonstrated the

shortest run time for the problem c?nsidered but, as shown by the results, th_

approximations inherent in the Guyan Reduction scheme led to reduced accuracy _'

in theeigensolutions. In fact, only four out of the 24 nonrigid body, eigen-

value _odes computed inthis manner were of good accuracy. Thus, if the prob-

lem contains more than just a few hundred mass degrees of freedom (thereby

precluding the use of the GIVENS method without a Guyan Reduction), and the

user does not wish todepend on a "judicious" choice of which of these degrees

of freedom to omit, then the most reliable course is to omit none of them. I_

this case, FEER is the obvious choice over the INVERSE POWER method. This
conclusion should be tempered somewhat by the fact that the FEER eigenvector8

tend to deteriorate in accuracy as the computed modes become more remote from

the shift point (center of the desired frequency range). However, it is not

expected that this would seriously affect the accuracy of a dynamic response

analysis in which there is limited frequency range for the dominant forcing

functions ....

It should be recognized that the above conclusions and run-tlme compari-

sons are only preliminary as of the time this report was written. As indicated

by the operation count studies in reference 5, further numerical comparisons

should show progressively increasing efficiency of FEER over the INVERSE POWER

method as the problem size and matrix bandwidth increase.

i.

,
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TABLE I. PROBLEM FORMULATIONS

Problem NASTRAN Most general

type Quantity Definition notation properties

[K]
Stiffness matrix -

analysis set [Kaa]

Structural
Mass matrix -

vibration [M]
analysis set r1[Maaj

modes

Square of a 2
% circular natural
a

frequency

Symmetric, nonnega-

tive, semidef inite

matrix

Same

Positive

Buckling

Stiffness matrix -
[K]

analysis set riLKaaj

Differential stiff-

[M] ness matrix - [K_a]a
analysis set

% Buckling load _%
a parameter

Symmetric, positive-

definite matrix

Symmetric, indefinite

matrix

Positive or negative
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TABLEII. INVERSEEIGENPROBLEMDEFINITIONS

Problem [B] [D] {X} A
type

i. Shif ted
1

vibration [Maa] [L-I]T [d]-l[L-l] [Maa] [Maa] {_} 2 2
modes _ -

o

, Unshifted

vibration

modes (in

the neghbor-
hood of zero

frequency

[c-l][Maa][C-l] T

[I] i
(identity [c]T{_} 2 2

matrix) _ +

3. Buckling [I] [c]T{_} -modes [C-I][K_a ][C-I]T 1

TABLE III. COMPARISON OF EIGENVALUE METHODS

Run Method OMITS

Total time
Time in Time in

Number of READ SMPI and in READ,

eigenvalues module SMP2 modules SMPI, and
found S_2 modules

(CPU sec) (CPU sec) (CPU sec)

1 GIVENS Yes

2 FEER Yes

INVERSE
3 Yes

POWER

4 FEER No

INVERSE
5 No

POWER

6 FEER No

7 FEER No

INVERSE
8 No

POWER

241 495 669 1164

30 1809 669 2478

30 1994 669 2663

30 1837 0 1837

22 3118 0 3118

30 1817 0 1817

15 879 0 879

15 1451 0 1451
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BULK DATA DECK

Input Data Card EIGR

Description: Defines data needed to perform real eigenvalue analysis.

Format and Example:

EIGR SID

EIGR 13 I DET I i.) I 15.6 I i0 I li I O i..I 1.-3 i A BC

+abc N_RM I G

+BC P¢INT I 32

c I I

Field

SID

HETHCD

FI, F2

NE

Figure i.

Content

Set identification number (Unique integer > 0)

Method of eigenvalue extraction• one of the BCD values "INV",

"DET" "GIV", "FEER" "UINV", or "UDET"

ii_" inverse power -_^_ ,_o+_ _o+_ operations.

DET Determinant method, symmetric matrix operations.

GIV Givens method of tridiagonalization.

FEER Tridiagonal reduction method_ symmetric matrix

operations.

UINV Inverse power method, unsymmetric matrix operations.

UDET Determinant method, unsynnnetric matrix operations.

Frequency range of interest (Required for METHCD = "DET",

"INV", "UDET", or "Ulna") (Real > 0.0; FI < F2). Frequency

range over which eigenvectors are desired for METHOD = "GIV".

The frequency range is ignored if ND > 0, in which case the

eigenvectors for the first ND positive roots are found. (Real

FI < F2). If ME_I_D = "FEER", FI is the center of range of

interest (Default is FI = 0.0) (Real 2 0.0), and F2 is the

acceptable relative error tolerance on frequency-squared, in

percent (Default is .001/n where n is the order of the stiffness

matrix) (Real _ 0.0)

Estimate of number of roots in range (Required for _TH_D =.

"DET",'"IIIV", "UDET", or "UINV", ignored for METHOD = "FEER"}
(Integer > 0)

Modifications to the EIGR bulk data card for the Tridiagonal ¢_
Reduction method.
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ND

NZ

E

G

C

Femarks:

i.

2.

.

4.

5.

Desired number of roots for METH@D = "DET", "INV", "UDET",

or "UI_/", (Default is 3 NE) (Integer > 0). Desired number

of eigenvectors fo_ METit_D = "GIV" (Default is zero) (Integer

> 0). Desired number of roots and ei_envectors for METHOD =

_FEER" (Default is automatically calculated to extract at least

o_.e accurate n_ode) (Integer > O)

Number of free body modes (Optional - used only if METHOD =

"DET" or "UDET") (Integer > O)

Mass orthogon21ity test parameter (Default is 0.0 which means

no test will be made) (Real > 0.0).

Method for normalizing eigenvectors, one of the BCD values

"_SS", "MAX" or "P_INT"

_SS - Normalize to unit value of the generalized mass

MAX - Normalize to unit value of the largest component in

the analysis set

P_INT - Normalize to unit value of the component defined in

fields 3 and 4 - defaults to "MAX" if defined com-

ponent is zero

Grid or scalar point identification number (Required if and only

if N_M = "P_!NT") (Integer > O)

Component number (One of the integers 1-6) (Required if and

only if E_RM = "P_IN_" and G is a geometric grid point)

Real eigenvalue extraction data sets must be selected in the Case

Control Deck (METHOD = SID) to be used by NASTRAN.

The units of FI and F2 are cycles per unit time. If _TH_D =

"FEER", F2 represents the maximum upper bound, in percent, on

I_'_EER_XACT - iI for acceptance of a computed eigensolution.

The continuation card is required.

If METHOD = "GIV", all eigenvalues are found.

If METHOD = "GIV", the mass matrix for the analysis set must be

positive definite. This means that all degrees of freedom, including

rotations, must have m_ss properties. _MIT cards may be used to re-

move massless degrees of freedom.
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A nonzero value of E in field 9 also modifies the convergence
criteria. See Sections 10.3.6 and 10.4.4.2 of the Theoretical

Manual for a discussion of convergence criteria.

If N@RM = "MAX," components that are not in the analysis set may

have values larger than unit.

If N@RM = "P@INT," the selected component must be in the analysis

set.

If METH@D = "GIV" and rigid body modes are present, F1 should be

set to a small negative number rather than zero if the rigid body

eigenvectors are desired.

The desired number of roots (ND) includes all roots previously

found, Such as rigid body modes determined with the use of the

SUP_RT card, or the number of roots found on the previous run when

restarting and APPENDing the eigenvector file.

Figure i. Concluded.
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BULK DATA DECK

Input Data Card EIGB Buckling Analysis Data

Description: Defines data needed to perform buckling analysis.

Format and Example:

i 2

I EIGB I SIDEIGB 13

3 4 5 6 7 8 9 I0

M'ETH#D { LI'"{ L2 I NEP [" NDP [ NDN I E I +abc

DET . [' 0.1 [ ...[2.5] 2 "[ I [ 1_ [ 0"/0 [ ABC

L +abc I N_P_I+BC I MAX t I I t :I t

Field

SID

METH@D

LI, L2

NEP

NDP, NDN

Contents

Set identification number (Unique integer > 0)

Method of eigenvalue extraction, one of the BCD values. "INV",

"DET", "FEER", "UINV", or "UDET"

INV - Inverse power method, symmetric matrix operations

DET - Determinant method, symmetric matrix operations

FEER - Tridiagonal reduction method, symmetric matrix

operations

UINV - Inverse power method, unsymmetric matrix operations

UDET - Determinant method, unsymmetric matrix operations

Eigenvalue range of interest (Real; LI < L2 > 0.0) For METH@D

= "FEER", LI is ignored and L2 is the acceptable relative error

tolerance on eigenvalues t in percent (Default is .O01/n where n is

the order of the stiffness matrix) (Real > 0.0)

Estimate of number Of roots in positive range. Desired number

of eigenva_ues of smallest ma.gnitude for >_TH¢D = "FEER"

(Default is automatically calculated to extract at lease one

accurate mode) (Integer > 0)

Desired number of positive and negative roots (Default = 3 NEP)

(Integer >0). Ignored for METH@D = "FEER"

Figure 2.
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E

N¢_t

G

C

Remarks

i.

2.

.

4.

.

6.

7.

Convergence criteria (optional) (Real > 0.0)

Method for normalizing eigenvectors_ one of the BCD values "MAX"

or "P_ IN_f''

_t_X - Normalize to unit value of the largest component in the

analysis set

P_INT - Normalize to unit value of the component defined in

fields 3 and 4 defaults to "MAX" if defined component

is zero

Grid or scalar point identification number (Integer > O) (Re-

quired if and only if N_RM = "P_INT")

Component number (One of the integers 1-6) (Required if and

only if N_P@! = "P_INT" and G is a geometric grid point)

Buckling analysis root extraction data sets must be selected in the

Case Control Deck (_TH_D = SID) to be used by NASTRAN.

The quantities LI and L2 are dimensionless and specify a range in

which the eigenvalues are to be found. An eigenvalue is a factor by

which the prebuckling state of stress (first subcase) is multiplied to

p ..... e bu_ ....b- "FEER", L! L2 repre-

sents the maximum upper bound, in percent, on I%FEER/___E_ACT - i I for

acceptance of a computed eigensolution.

The continuation card is required.

See Sections 10.3.6 and 10.4.2.2 of the Theoretical Manual for a dis-

cussion of convergence criteria.

If >_TH_D = "bET" LI must be greater than or equal to 0.0.

If N_M = "MAX", components that are not in the analysis set may have

values larger than unity.

If N_RM = "P_INT", the selected component must be in the analysis set.

Figure 2. Concluded.
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