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Abstract

A structural optimization procedure is used
to determine the shape of an alternate design
for the shuttle's solid rocket booster field
Joint, In contrast to the tang and clevis
design of the existing joint, this alternate
design consists of .two flanges bolted together.
Configurations with 150 studs of 1 1/8 in
diameter and 135 studs of 1 3/16 in diameter are
considered. Using an nonlinear programing
procedure, the joint weight is minimized under
constraints on either von Mises or maximum
normal stresses, joint opening and geometry.
The procedure solves the design problem by
replacing it by a sequence of approximate
(convex) subproblems; the pattern of contact
between the joint halves is determined every few
cycles by a nonlinear displacement analysis.
The minimum weight design has 135 studs of 1
3/16 in diameter and is designed under
constraints on normal stresses. It weighs 1144
lb per joint more than the current tang and
clevis design.

Introduction

The January 28, 1986 space shuttle accident
is believed to have been caused by a failure of
the pressure seal in the aft field joint of the
right solid rocket booster. The first

recommendation of the Presidential Commissloﬂ
established to examine the circumstances of the
accident was a field joint redesign, possibly
even the introduction of a totally new joint
design. Several different concepts have been
considered to modify or replace the current tang
and clevis design (see Ref. 2, for example).
One of the concepts developed at the NASA
Langley Research Center involves a bolted flange
joint that is expected to be more predictable
and provide better sealing than the current
design at the expense of requiring new case

segment rorgingss'u’s. The joint is depicted in
Fig. 1. The end flanges of two consecutive
booster segments are bolted together by studs.
The studs are recessed to minimize interferences
with the airstream and a cork insulation is
included to further smooth out the flow over the
joint. The continuity of the longitudinal
stresses across the joint is insured by the
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presence of gussets that divert some of the

.shell stresses and also reduce the bending i{n

the shell. The studs are pretensioned and
sealing is provided by one c~ring and one o-
ring. The joint material includes the following

steels3: D6AC for the shell, MP3SN for the studs
and Inconel 718 for the nuts. Initial analyses
revealed that the baseline bolted joint was
heavier than the current design while still
opening under load and having areas of very high
stresses. It was decided to try and remedy
these problems using the tools of optimization
(nonlinear programing). ’

This problem belongs to the class of
structural shape optimal design. The joint
model considered {s a three-dimensional solid.
A recent survey of the structural optimization

literature by Haftka and Grandh16 reveals little
experience with this type of model. This is due
to the fact that two major components of the
shape optimization process: automatic finite
element mesh generation and shape sensitivity
analysis are not yet developed enough for fully
three-dimensional models. Automatic mesh
generation is necessary because, as the initial
shape of the solid is changed in the
optimization process, the initial finite element
mesh may become so distorted that it is
inadequate and a new mesh must be regenerated, a
procedure that is tedious and time consuming if
performed manually. Current "automated"
procedures still remain interactive and consume

hours of computer time7. There are two
approaches to calculating analytical shape
sensitivity derivatives: taking derivatives of
the discretized finite element equations for the
structural response or deriving sensitivity
equations directly from the fundamental
equations of continuum mechanics. While both
approaches have been developed theoretically and
have been applied with various success to two-
dimensional (or axisymmetric) problems, a

recent review by Adelman and Hartka8 reports no
example that involves shape sensitivity analysis
of three-dimensional solids. In two
applications of three-dimensional shape

optimization, Imamg'10 models the shape of the
structure using a series of design elements
which distort as the structure geometry changes.
Each design element is itself subdivided into a
fixed number of finite elements for structural
analysis, thereby providing for a simple
automated mesh generation capability where a new
mesh i's generated with each design but the
number of finite elements is fixed at the
outset. Gross geometrical dimensions are chosen
as design variables (up to 4), Satisfactory
results are reported for simple beams or engine
bearing cap models., Sensitivity analysis is




performed by finite difference. 1In another

application, Hasserman11 uses a similar concept
of hyperelements to optimize gravity dams,
taking as design variables coordinates and
slopes of the cross-section of the dam (up to
20). A special-purpose sensitivity analysis
procedure is devised based on directly taking
derivatives of the discretized finite element
equations.

This paper describes the shape optimization
of a bolted solid rocket booster field joint
concept. The joint weight is minimized under
constraints that limit the stresses in the model
and that also insure that the gap between two
consecutive booster segments remains closed.
The optimization model includes 6 geometrical
variables as well as one variable controlling
the pretension in the studs. As for the design
element and hyperelement approaches described
above, the finite element mesh adapts to changes
in geometry but the number of finite elements is
fixed. The model behavior is nonlinear because
the pattern of contact between the two joint
halves is unknown at the outset. Optimization
is performed replacing the initial nonlinear
nonconvex design problem by a sequence of
approximate convex subproblems solved with the
usable~feasible direction method. Strong
initial constraint violation is overcome by use
of a constraint relaxation technique. Gradients
are obtained by finite difference. The details
of the finite element model and analysis used to
determine stresses and displacements are given
first, Then the optimization approach is
presented. A few words follow about computer
implementation of the procedure and optimization
results are given.

Finite Element Model and Analysis

The geometry of a nominal joint model is
shown in Fig. 2. The joint behavior i3 assumed
to be symmetric with respect to : 1) the
interface between two consecutive booster
segments, 2) a plane through the booster axis
and a stud axis and 3) a plane through the
booster axis bisecting the angle between two
consecutive stud axes. The length of the model
is 50 in, a distance at which the bending in the
shell caused by the joint stiffness has become
negligible and the shell stresses match those
predicted by membrane theory for internal
pressure loading within 1%.

The finite element model selected is
depicted in Fig. 3. It has 410 four-, six- and
eight-node solid finite elements based on an

assumed stress fleld12 formulation, The applied
loads correspond to an internal pressure of 1000
psi. This {s slightly more than the pressure
observed anywhere in the booster during
ignition. These loads include 1) internal
pressure on the inner shell nodes (1000 psi), 2)
resultant of pressure effect in axial direction
on model top nodes (36406 1b/in), and 3) contact
forces due to compression of the sealing rings
(which are not modelled); these are applied at
the first inner row of nodal points on the
bottom of the flange (500 1b/in). Also, the
pretension in the stud {s modelled as a
temperature drop. While the final design of
this joint should include more load cases such

as non-symmetric ones, this case is felt to be
representative of the loads encountered by the
booster; further, it has been used in other
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comparison.

_The boundary conditions applied to the model
enforce radial displacement for the nodes on
planes passing through the booster axis and the
edges of the model. The nodes at the top of the
model are free. The boundary conditions for the
bottom of the model flange are variable and
depend on how the flange bottom contacts the
foundation. Where there 1s contact between
joint halves, the nodes have constrained axial
displacement, otherwise, the nodes are free.
Finally, the stud and nut are monolithic and the
nodes on the bottom of the nut and the
corresponding ones on the top of the flange are
constrained to the same displacements. Also,
the nodes on the bottom of the stud have no
axial displacement. After imposition of the
boundary conditions, the model has approximately
2200 degrees-of~freedom.

The structural analysis of the model is
nonlinear because the pattern of contact between
the two joint halves is unknown. In other words
it must be determined whether the axial degrees-
of-freedom for the nodes on the bottom of the
model are free or fixed. This is done in an
iterative fashion. An initial pattern is
assumed. Then a conventional linear finite
element analysis is conducted. The axial nodal
displacements and reactions are examined at the
bottom of the flange. If a node where contact
is assumed shows negative axial reaction, this
indicates a tendency toward joint opening and
the axial degree-of-freedom is freed. If a node
where no contact is assumed shows negative axial
displacement, this indicates a tendency toward
Joint closing and the axial degree-of~freedom is
fixed. A new displacement analysis is performed
and the process is continued until convergence.
For this example where the contact surface
contains 17 nodes, these nonlinear analyses
required up to 5 cycles.

and thereby provides a good basis for

Optimization Model and Procedure

The variables of the problem are given on
Fig. 2. Variable X, determines the radial

position of the stud axis and therefore controls
the opening of the joint., If the stud axis is
well outside of the shell walls, the tensions
developed in the shell tend to open the inside
of the joint (see Fig. 4). While if the stud
axis is well inside of the shell, most of those
tensile stresses are carried by the gusset and
the joint opens on the outside. The latter
behavior is definitely more desirable than the
former since the sealing rings are located
toward the inside of the joint. An additional
variable X, specifies a drop in temperature for

the stud thereby simulating stud prestressing;
this variable {s also very important {n
controlling the joint opening. The optimization
problem objective function is the model weight.
The effect of changes in stud diameter were
studied by considering two specific designs, one
with 150 studs of 1 1/8 in diameter and a second
with 135 studs of 1 3/16 in diameter.




For each element, the analysis gives stress
values at each of the nodes. At each node of
the model, the stresses are defined as the
averages of those predicted for that particular
node in each of the elements that are connected
to it. During the optimization process, stress
constraints limit the average nodal stresses
observed in the joint. One stress 1is
constrained for each element and it is either
the maximum von Mises stress or the maximum (in
absolute value) normal stress observed in the
element. There are thus 410 stress constraints.
In order to facilitate tracking of these
constraints, the elements are assembled in 10
groups as depicted on Fig. 3.

Figure 5 depicts the node pattern on the
bottom of the flange, it is divided intoc three
areas. The innermost area is where contact s
enforced between two consecutive booster
segments in order to insure positive sealing and
prevent exhaust of hot gases. The contact is
controlled by constraining the sign of the
reactions for the two innermost rows of nodes on
the flange . At these 8 nodes, the reactions
are constrained to remain compressive. The
flange outermost area is where the two segments
are free to contact or not depending on the
loading conditions. 1In the remaining area,
essentially under the nut bearing surface,
contact is prevented by the presence of a milled
recess in the flange; this leaves the innermost
and outermost flange areas for contact between
the two joint halves. Preliminary sensitivity
studies have shown that this facilitates joint
closing.

Three geometrical constraints are added: two
guarantee that the stud and the nut can be
inserted in the joint and the third one prevents
against excessive compression of the finite
element mesh in the straight shell area
immediately next to the joint. The design
problem includes 421 constraints. The gradients
required for optimization are obtained by
backward finite difference (assuming that the
contact pattern at the base of the flange is not
affected by the perturbation in the variables).

Optimization is conducted by replacing the
initial nonlinear, nonconvex and implicit
problem by a sequence of nonlinear but convex
and explicit subproblems. The mathematical
details of the subproblem formulation are given
in App. A. At the starting point of each cycle,
a new subproblem is constructed. The objective
function and constraints are approximated by
convex approximations based on first-order
analysis information. The total number of
constraints i{s reduced from 421 to 14 by
associating one cumulative constraint with each
of the 10 element groups and one with the 8
reaction constraints. This cumulative
constraint is a conservative envelope function
that preserves the convexity of the
approximations. To accommodate starting points
with strongly violated constraints, a constraint
relaxation procedure is added. Each convex
subproblem is solved using a usable-feasible
direction procedure.

Typical optimization starting points
considered in this study have most constraints
violated. This can cause difficulties for the
usable-feasible direction optimization procedure
used. The design procedure is therefore

conducted in three steps. A starting design is
chosen that satisfies the three geometrical
constraints. In the first step, only the stud
stress constraint and the joint closure
constraint are retained in the problem. Both of
those constraints are relaxed and optimization
is conducted to satisfy them. In the second
step, the relaxation is removed from the stud
stress and the joint closure constraints, the
remaining stress constraints are added and
relaxed and optimization {s continued until all
the .constraints are satisfied or critical. In
the third step, relaxation is removed from all
constraints involved and weight minimization is
continued to convergence. During optimization,
the pattern of contact between joint halves is
continuously changing as the design evolves. To
reduce computational time, nonlinear
displacement analyses are only performed every
few (typically 5) cycles; otherwise, the flange
bottom boundary conditions are assumed unchanged
from the previous cycle and only linear finite
element analysis i{s performed.

Computer Implementation

The procedure described above is implemented

using the existing PROSSS13 system as core

software. Structural analysis is performed with

the EAL12 finite element program and
14

optimization is carried out with the CONMIN
code. The solid model of the joint and the
initial finite element discretization are

generated with the I-DEAS15 package. As

optimization changes the initial model, a
special-purpose FORTRAN code has been developed
that generates updated nodal coordinates.
Intermediate and final structural analysis
results are reviewed using the postprocessing
capabilities of the I-DEAS package.

The procedure executes on DEC VAXstation II
computers with 6Mb of main memory and 71Mb hard
disks, Because sensitivity analysis uses finite
difference, 8 complete structural analyses must
be conducted before constructing an approximate
subproblem and continuing with optimization.
These analyses are conducted in parallel on 4
workstations simultaneously. As analysis time
strongly dominates the total computational cycle
time, this distributed mode of execution enables
a speedup factor of about 4 yielding a complete
optimization cycle in slightly less than one
hour of clock time. This is described in detail
in Ref. 16.

Most of the procedure is implemented in
single precision (32-bit) except for the
structural analysis stiffness matrix assembly
and decomposition which use double precision.
Comparison of analysis output with results
obtained entirely with 60~-bit arithmetics
indicates that 3-4 digits are reliable for
displacements and reactions. While this type of
accuracy is sufficient for analysis results,
difficulties arise when derivatives of response
quantities are to be obtained by finite
difference. Experimentation indicates that
finite difference stepsizes of up to 20% of the
variables considered are required to minimize
the effect of round-off errors. Clearly,
significant truncation errors must be




anticipated and decreased approximate subproblem
fidelity must be expected. Therefore all
subproblems are solved with move limits which
restrict the range of the design variables
during approximate subproblem optimization.
These move limits are initially prescribed to be
10% of the initial design variables and are
reduced to 5% if approximation accuracy is felt
to impede convergence.

Results

Two design studies are described in this
section; they correspond to two different
configurations of studs with approximately the
same total stud cross-sectional area and total
nut bearing area. The first configuration has
150 studs of 1 1/8 in diameter for a total 149

in2 of stud éross-sectional area and 495 in2 of

stud bearing area; the second configuration has
135 studs of 1 3/16 in diameter for a total of

150 in2 of cross-sectional area and 500 1n2 of

nut bearing area. It is expected that the 135
stud design will enable the use of a wider
gusset and thereby result in a more effective
transmission of the axial loads. In each study,
two designs are generated. The first design has
constraints placed on the von Mises stresses in
the structure, For each material, the allowable
von Mises stress is taken as the lowest of the
ultimate tensile allowable stress divided by a
1.4 safety factor or the yield allowable stress

divided by a 1.25 faetorB. For the shell, the

stud, and the nut, this corresponds to 139.,
191, and 172. ksi respectively. The second
design is similar to the first, except that the
stress constraints are placed on the maximum
normal stresses. The allowable stresses are
unchanged for the stud or the nut. However, the
normal stresses in the shell are allowed to
reach 155, ksi., a value representative of
stress levels observed in the present design

under the same load casez. For all the design
cases, optimization is conducted until complete
convergence; the weighting factor Y for the
constraint violation term in the objective

y
function (see App. A) is varied between 10 and

109; this results in the final constraint

violation being 1% or less (.OO_<_w-1$.O1).

In both studies, the stress constraints for
the areas immediately around the hole and where
the joint transitions to nominal shell (groups 3
and 9, Fig. 3) are not included in the
optimization process. Both those areas are
prone to stress concentrations. The hole {s in
the flange which, acting as a ring stiffener on
a pressure vessel, is in tension. Also, the
apex of the joint pocket, where consecutive
gussets merge into the nominal shell, actually
creates a notch in the shell at a point where it
is in tension itself, It is unreasonable to
drive the joint design by the presence of these
localized high-stress areas. Indeed, these
stress concentrations are unavoidable. Any
reduction in peak stresses requires reduction of
the stress levels from which the concentrations
rise and would lead to prohibitive flange and
shell thicknesses. Hence, some ylelding must be
tolerated in these restricted areas, provided

the shell material is ductile. This, in turn is
likely to smooth out the stress concentrations.
Also, this difficulty may be somewhat reduced by
careful local design.

A comparison of the various designs is given
in Table 1. Examination of these results
reveals that the von Mises stress constraint is
significantly more conservative than the maximum
normal stress constraint. Indeed, the latter
constraint ignores shear stresses while these
contribute to the transfer of loads between the
flange and the gusset. Further, it also ignores
such unfavorable combination of normal stresses
with compression and tension acting in
orthogonal directions. As a result, there are
marked differences between designs that have
different stress constraints but the same stud
configuration. In contrast, designs with the
same stress constraint but with different stud
configurations are similar, pointing to the fact
that the design is probably more driven by the
total stud cross~sectional area and nut bearing
area than by the specific combination of stud
diameter and number of studs. The results
indicate that this specific bolted design can
carry a penalty of about 1144 to 2003 1b per
joint over the current tang and clevis design,
depending on the assumption regarding the stress

being constrained. Trajectory caJ.culati':ms‘7
indicate that there is a penalty of about 0.100
to 0.125 1b of payload per 1lb of structural
weight added to each booster. Therefore, the
results shown here would imply a payload loss of
between 114 and 250 1b per joint. Note that
while the designs under von Mises stress
constraints have no constraint violation (w-
1=0), both designs under maximum normal stress
constraint have some minor violation (w=1>0).
This is despite attempts at solving the relaxed
problem with Y coefficients (Egs. A7, App. A) of

up to 109. As explained in App. A, this

indicates that there is no feasible design for
the maximum normal stress constraints; however,
the violations are so small that they are of no
significance.

The active and nearly active constraints
include the joint closure and the nut and stud
insertion constraints for all designs. The
stress constraints for the top layer of elements
in the flange (constraint 5) and for the nominal
shell (constraint 10) are always active.
Constraint 5 is dominated by tensile stresses in
the flange and compressive bearing stresses due
to the nut. Constraint 10 involves axial
tension due to internal pressure and hoop
tension due to internal pressure as well as the
concentration at the apex of the joint pocket.
The stress constraints for element groups 6 and
7 are dominated by axial tensile stresses in the
gusset; they are nearly active for the designs
under von Mises stress constraints and active
for those under normal stress constraints.
Finally, the stud (element group 1) and the nut
(element group 2) are constrained to their
allowables for the designs under maximum normal
stress constraints.

Variable X,, the stud axis position, affects
the gap closure as well as bending stresses in
the shell; the final position of the stud axis
is about .6 in inboard of the nominal shell



midplane. Variable X,, the stud preload,

affects the joint closure as well as the bearing
stresses developed in the top layer of the
flange. The preload selected ty the procedure
does not depend on the stud coufiguration in
these examples but, rather, on the stress
constraint hypothesis retained. The general
tension in the flange and the compression due to
the nut result in an unfavorable von Mises
stress so that considerably less preload is
allowed under the von Mises stress constraint
than under the maximum normal stress constraint,
Variable X, affects both the joint closure by

changing the bending stiffness of the flange and
the hoop stresses in the flange. Variable X, is
larger under the von Mises stress constraint
than under the maximum normal stress constraint
because the stud preload is lower. The
difference is larger for the 150 studs
configuration than for the one with 135 studs,
probably because there is more distance between
studs in the latter configuration and therefore
more stiffness is needed to keep the joint
closed. Variables X, and X, control the amount

of material available to carry the axial loads
from the joint plane to the nominal shell. The
nut insertion constraint essentially acts as an
upper bound to the gusset thickness and the
thicker gusset available in the 135 stud
configuration favorably reduces the shell
thickness. Generally, going from von Mises
stress to normal stress constraints is also
favorable. Finally, variable X, controls the

pocket height and is directly affected by the
stud insertion constraint; it essentially equals
X, plus the minimum clearance needed for the
stud.

In the areas where the stresses were not
constrained, the designs show stresses which,
although higher than the allowables, remain
lower than some of the stresses observed in the

current tang and clevis design? The
displacements observed on the inside of the
joint are extremely small and testify to the
efficiency of the joint closure constraint used.
At the same time, the displacements at the
outside of the joint are relatively small
themselves which indicates that satisfying the
stress constraints results in a joint having a
relatively high stiffness. Finally the
integrated load on the studs is always
significantly lower than the allowable value
determined by assuming pure tension loading to
the stud allowable stress value. This is partly
because the stud is loaded not only in tension
but also in bending. For the designs with
constraints on the maximum normal stress, the
stud stress constraint is active., It is not the
case for the design with constraints on the von
Mises stress constraints probably because that
would result in bearing stresses on the upper
surface of the flange that are tooc high.
Convergence took up to 30 cycles for each of
the four examples discussed. Convergence was
sometime relatively slow and, occasionally (in
less than 10% of the cases run), 1t was even
impossible and optimization had to be restarted

with a different starting point. These
occasional difficulties with convergence can be

POO

Vi VEDOES

QUALITY

partially attributed to the relatively tight
(10%, sometime 5%) move limits used. Also, the
often conservative convex approximations can be

a contributing factor, as reported in Refs, 18
and 19. A typical convergence history is given
in Fig. 6 for the 135 stud configuration under
von Mises stress constraints. A relatively
smooth convergence is obtained in 14 cycles.
Optimization i{s started under displacement and
stud stress constraints only. In the first two
cycles the displacement constraint is satisfied
by moving the stud inward (decreasing X,) and by

decreasing the shell thickness (X,) and,

therefore its stiffness. The remaining stress
constraints are then added and the stud moves
outward approximately to its initial position
while the shell thickness increases
significantly to decrease the bending stresses.
In general, the stud preload (X,) decreases

steadily to reduce the bearing stresses. At the
same time, the flange thickness (X,) increases

to supply the stiffness necessary to keep the
Joint closed and to 1limit the flange hoop
stresses. As explained above, the pocket height
(X¢) generally follows the changes in flange

thickness., Also, the gusset width (X,) is

determined by the nut insertion constraint and,
therefore, generally follows the stud radial
position. 1Indeed, the further the radial stud
position, the larger the circumference available
to place the nuts and, as the nut number is
fixed, the larger the maximum width available
for the gusset.

A history of the axial displacements in the
plane of the joint is given on Fig. 7 for the
135 stud configuration. The 150 stud
configuration exhibits the same trends. For
this particular example, the initial design has
a joint closure constraint nearly satisfied and
therefore no displacement appears at the
constrained nodes. As shown on Fig. 6 it takes
tWwo cycles to fully satisfy the joint closure
constraint on the inside of the joint while the
displacements tend to increase on the outside of
the joint where contact is not required.
Enforcement of the von Mises stress constraints
results in a very significant stiffening of the
flange. The same is true to a lesser extent
when the maximum normal stress constraints are
enforced. In the area of the milled recess, the
sagging of the flange never exceeds 3 mil and is
not a matter of concern. Also, the stiffness of
the flange is high enough that there never is
contact between the stud and the hole for the

' final designs.

Finally, Fig. 8 shows an evolution of the
von Mises stress patterns for the same 135 stud
configuration. The initial design shows high
stresses around the hole and on the upper part
of the flange; also, stresses are high at the
apex of the pocket. After optimization with von
Mises stress copnstraints (allowable is 139 ksi),
the high stress areas have been reduced at the
expense of signifieantly increasing the
proportions of the joint. After optimization
with maximum normal stress constraints
(allowable is 155 ksi), slightly higher stresses
are observed, particularly at the top of the



gusset; however, the joint proportions are
reduced, particularly the thickness of the
shell.

Conclusions

A procedure is presented for the structural
optimization of the shape of a bolted
alternative to the current space shuttle solid
rocket booster tang and clevis field joint. The
design problem is formulated as a minimum weight
problem under constraints on stresses, joint
opening and geometry. The joint opening
constraint is transformed into a constraint on
the sign of the reactions on the faces of the
joint. The initial nonconvex, nonlinear and
implicit design problem is replaced by a
sequence of nonlinear but convex and explicit
problems which are solved in an iterative
fashion. A constraint relaxation feature is
added to overcome strong initial design
infeasibility. The determination of the opening
pattern for the joint is found by a nonlinear
displacement analysis which is repeated every
few cycles in the design process. During
optimization, the joint location in the finite
element mesh are modified to reflect the changes
in the model shape, but the number of nodes and
elements remains fixed., The derivatives
required for the optimization process are
obtained by finite difference. The procedure
generally performs well. Convergence 1is
occasionally slowed down or even stopped. This
is related to the use of limited precision
software and the resulting need for tight move
limits as well as to the use of the often
conservative convex approximations,

The procedure is used to optimize designs
with two stud configurations under constraints
on either von Mises or maximum normal stresses.
The loading corresponds to a uniform 1000 psi of
internal pressure. The best design obtained
uses 135 studs of 1 3/16 in diameter. It weighs
1918 1b or 1144 1b per joint more than the
current tang and clevis design. For each joint
redesigned in one solid rocket booster, this is
estimated to result in a 114 to 143 1b payload
penalty. For a given stud configuration, the
final design is very sensitive to the stress
constraint assumption. On the other hand, the
design appears to be relatively insensitive to
the stud configuration. The procedure
satisfactorily keeps the joint closed and
maintains the constrained stresses within their
allowables. Two areas are not subjected to
stress constraints because they are prone to
stress concentration. However, the resulting
stresses remain reasonable; they are expected
to be further reduced by plastic flow as well as
by careful local design.

Appendix A: Approximate Subproblem Formulation

The functional form of the nonlinear
programing problem at hand is as follows:

find X so that
£(X) is minimum and
g8, (X) L0, 1=1,n

¥t ox ¢ xd (A1)

xl and xu are lower and upper bounds on the

design variables. The objective f is a scalar

function of the vector of design variables X;
the constraints are organized in several
constraint vectors:

T
g = (311' 312""31ni) (A2)

where giJ is a scalar function of X. This

optimization problem is nonlinear, nonconvex and
implicit. To render optimization cost-
effective, the problem is replaced by a sequence
of subproblems that is still nonlinear but
convex and explicit. The initial subproblem is
solved in cycles where the starting point of a
cycle is the optimum solution of the subproblem
constructed in the previocus cycle. Assume that

the starting point of the current cycle is X°
(for the sake of clarity, the cycle index is
omitted in this discussion). First, the design
variable vector is normalized at the starting

point. A new variable X is introduced so that

its 1th component is given by:

- ° i
Xl - XQ/XI (A3)

The objective function and the constraints
of the problem are then approximated. Assuming

that h(X) is any one of those functions, its
approximation is:

e ¢ dh(1.) 5 _
h(X) = h(1.) + Ii,m-g’__(xg' 1.)

- dn(1.).0,. _1.
T LS S S P
i- 9X, LXK

) (Al)

where §_ (7 ) indicates that the summation is

extended to those variables for which the
gradient component dh(1.)/dXE is positive

(negative). For positive design variable

values, this approximation is convex20 and also

the most conservative21 of all those based on
first-order information and using terms linear
in the variables or their reciprocal. The
approximation quality decreases as the design

. o
moves away from the initial design X 8¢ that
limits must be introduced to restrict that move;

"if 8 is the accepted relative change in the

design (0.< B < 1.):

(1.-8) < X < (1.+8) (45)
To reduce the number of constraints handled
by the optimizer, each vector of approximate
constraints 81 is replaced by a scalar

constraint Ci:




n -
C.(X) = - 1n{ 1! explog. . (X217} (A6)
i [ j i)

This envelope function is known as the

Kreisselmeier-Ste1nhauser22 function. It has
been shown to be conservative and to preserve

the convexity of the approximate subproblem‘g.

A final transformation of the subproblenm
involves the introduction of a selective
constraint relaxation capability. A new
variable w i{s introduced to relax the violated
constraints and the new subproblem is then given
by:

find i, © S0 that

£(X) + Yf(1.)w is minimum and
- o

Ci(x) +a (1~ww) <0, 1-1,n8

i

ez

(1.-8) < X < (1.+8)

1./6° < o (AT)
Parameter ay is input as either 1. i{f constraint
1 must be relaxed or 0. otherwise. The initial
value u°® (w=ww®) of the relaxation variable is
chosen so that all the constraints are rendered
satisfied at the initial design x® (X=1.); it is
defined by

w® (48)

-1, + max[O..i,maT‘o[Ci(1.)]}

Minimization of the new objective function of
(A7) will tend to drive the relaxation variable

towards its lower bound. If w reaches its lower
bound, then Problem A7 becomes identical to
Problem A1 {(except for a constant offset of the
objective function). The non-negative, user-
defined parameter Y is chosen so that a
predetermined ratio exists at the initial design

between the true objective function f(1.) and

the penalty term Yf(1.). Should the solution of
A6 still be infeasible for A1, it may be
necessary to increase that ratio.

Note that, if Al does not have a solution, a

final value of w that is greater than 1./w°
will result. Solving a sequence of subproblems
as in A7 {s a rational approach to findinga
design that, in a certain sense, 'minimizes' the
violation of the constraints of Al.
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Table 1 Comparison of final designs.

Number of studs 150 150 135 13%
Stud diameter (in) 1 1/8 11/8 1 .3/16 1 3716
Constrained stress von Mises max. normal von Mises max. normal
Weight (1b)! 2674, 1974, 2777. 1918,
Constraint violation? .000 .010 .000 .007
X, (in) 1.23 1.16 1.18 1.25
X, (in) 1.75 1.18 1.98 1.73
X, (in) 1.06 LT04 .927 .374
X, (in) . 347 .356 L417 448
Xs (in) 1.50 1.70 1.32 1.13
Xe¢ (in) 4,12 3.56 4,49 4,22
X, (°F)* 4.79 8.22 4.75 8.18
Active constraints"

Stress in gY‘OUpS’ 5.6.7.10 1,2,5,6,7,10 S-(6)o(7)n10 1121516170(8)'10

Joint closure y y y y
Stud insertion y y y y

Nut insertion y y (y) y
Maximum stress values

Family 3 (ksi) 160. 224, 162, 217.

Family 9 (ksi) 136. 151, 149, 184,
Maximum displacements

Inner diam (mil) .01 .00 .02 .01
Quter diam (mil) .46 1.23 .60 .00
Stud load (kips)® 109. 168, 122. 197.

Notes:

1) Weight is excess weight over straight shell for both halves of one field joint.

The

initial tang and clevis design weighs 774 1b more than a straight shell3.

2) Value is w~1 (see App. A).

For example, for a stress constraint, a value of 0.01

indicates that the stress exceeds its allowable by 1%.

3)
4)
almost active constraint (0<g<0.05).
5)
6)
while a 1 3/16 in stud carries 212 ki

ps.

Based on a fictitious linear thermal expansion coefficient of .00! 1n/°F.
y or a number i (0<i<10) indicates an active constraint; (y) or (1) indicates an

For this particular design, constraints 6 and 7 are redundant.
If stressed axially to its allowable (191 ksi), a 1 1/8 in stud carries 190 kips
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