3,276 research outputs found

    Collective pairing of resonantly coupled microcavity polaritons

    Get PDF
    We consider the possible phases of microcavity polaritons tuned near a bipolariton Feshbach resonance. We show that, as well as the regular polariton superfluid phase, a "molecular" superfluid exists, with (quasi-)long-range order only for pairs of polaritons. We describe the experimental signatures of this state. Using variational approaches we find the phase diagram (critical temperature, density and exciton-photon detuning). Unlike ultracold atoms, the molecular superfluid is not inherently unstable, and our phase diagram suggests it is attainable in current experiments.Comment: paper (4 pages, 3 figures), Supplemental Material (7 pages, 8 figures

    Precise atmospheric oxygen measurements with a paramagnetic oxygen analyzer

    Get PDF
    A methodology has been developed for making continuous, high-precision measurements of atmospheric oxygen concentrations by modifying a commercially available paramagnetic oxygen analyzer. Incorporating several design improvements, an effective precision of 0.2 ppm O-2 from repeated measurements over a 1-hour interval was achieved. This is sufficient to detect background changes in atmospheric O-2 to a level that constrains various aspects of the global carbon cycle. The analyzer was used to measure atmospheric O-2 in a semicontinuous fashion from air sampled from the end of Scripps Pier, La Jolla, California, and data from a 1-week period in August 1996 are shown. The data exhibit strongly anticorrelated changes in O-2 and CO2 caused by local or regional combustion of fossil fuels. During periods of steady background CO2 concentrations, however, we see additional variability in O-2 concentrations, clearly not due to local combustion and presumably due to oceanic sources or sinks of O-2. This variability suggests that in contrast to CO2, higher O-2 sampling rates, such as those provided by continuous measurement programs, may be necessary to define an atmospheric O-2 background and thus aid in validating and interpreting other O-2 data from flask sampling programs. Our results have also demonstrated that this paramagnetic analyzer and gas handling design is well suited for making continuous measurements of atmospheric O-2 and is suitable for placement at remote background air monitoring sites

    On the role of large bubbles in air-sea gas exchange and supersaturation in the ocean

    Get PDF
    A parameterization of bubble-induced gas exchange is presented in which the bubble contribution to gas exchange is expressed in terms of separate transfer velocities for ingassing (Kbin) and outgassing (Kbout). The difference between the ingassing and outgassing velocities (Kbin − Kbout) is further separated into two components, the first caused by the injection of small bubbles into the water, the second caused by gas exchange across the surface of hydrostatically compressed larger bubbles. It is argued that both Kbout and the exchange contribution to the difference Kbin − Kbout should be largely independent of the dissolved concentrations of the major gases N2 and O2. A simple model is presented which allows Kbout and the exchange contribution to the difference Kbin − Kbout to be estimated. The model incorporates data from laboratory simulation experiments on the bubble production spectrum. The results indicate that bubbles larger than 0.05 cm in radius, which have often been assumed to play a negligible role, contribute significantly to bubble-induced gas exchange and supersaturation in the ocean. The model is used to explore the sensitivity of bubble-induced gas exchange to the overall air entrainment rate, size and depth distributions of the bubbles, and to the gas exchange rates across the surface of individual bubbles. The model suggests that bubbles may make an important contribution to overall gas exchange at windspeeds above 10 m sec−1. In this regime gas transfer velocities should depend, not just on diffusivity, but also on the solubility of the gases. It is suggested that Kb(out) should scale roughly as α−0.3D0.35 where α is the solubility and D is the diffusivity. The model results, in combination with measurements on inert gas supersaturations, suggest that the global-mean supersaturation of CO2 induced by bubbles is not larger than 0.3% and most probably is around 0.08%. A major uncertainty results from a lack of information on production rates and distributions of large bubbles. Several possible experiments are proposed for improving estimates of bubble-induced gas exchange and supersaturation

    Atmospheric potential oxygen: New observations and their implications for some atmospheric and oceanic models

    Get PDF
    Measurements of atmospheric O2/N2 ratios and CO2 concentrations can be combined into a tracer known as atmospheric potential oxygen (APO ≈ O2/N2 + CO2) that is conservative with respect to terrestrial biological activity. Consequently, APO reflects primarily ocean biogeochemistry and atmospheric circulation. Building on the work of Stephens et al. (1998), we present a set of APO observations for the years 1996-2003 with unprecedented spatial coverage. Combining data from the Princeton and Scripps air sampling programs, the data set includes new observations collected from ships in the low-latitude Pacific. The data show a smaller interhemispheric APO gradient than was observed in past studies, and different structure within the hemispheres. These differences appear to be due primarily to real changes in the APO field over time. The data also show a significant maximum in APO near the equator. Following the approach of Gruber et al. (2001), we compare these observations with predictions of APO generated from ocean O2 and CO2 flux fields and forward models of atmospheric transport. Our model predictions differ from those of earlier modeling studies, reflecting primarily the choice of atmospheric transport model (TM3 in this study). The model predictions show generally good agreement with the observations, matching the size of the interhemispheric gradient, the approximate amplitude and extent of the equatorial maximum, and the amplitude and phasing of the seasonal APO cycle at most stations. Room for improvement remains. The agreement in the interhemispheric gradient appears to be coincidental; over the last decade, the true APO gradient has evolved to a value that is consistent with our time-independent model. In addition, the equatorial maximum is somewhat more pronounced in the data than the model. This may be due to overly vigorous model transport, or insufficient spatial resolution in the air-sea fluxes used in our modeling effort. Finally, the seasonal cycles predicted by the model of atmospheric transport show evidence of an excessive seasonal rectifier in the Aleutian Islands and smaller problems elsewhere. Copyright 2006 by the American Geophysical Union

    Absorption, Photoluminescence and Resonant Rayleigh Scattering Probes of Condensed Microcavity Polaritons

    Full text link
    We investigate and compare different optical probes of a condensed state of microcavity polaritons in expected experimental conditions of non-resonant pumping. We show that the energy- and momentum-resolved resonant Rayleigh signal provide a distinctive probe of condensation as compared to, e.g., photoluminescence emission. In particular, the presence of a collective sound mode both above and below the chemical potential can be observed, as well as features directly related to the density of states of particle-hole like excitations. Both resonant Rayleigh response and the absorption and photoluminescence, are affected by the presence of quantum well disorder, which introduces a distribution of oscillator strengths between quantum well excitons at a given energy and cavity photons at a given momentum. As we show, this distribution makes it important that in the condensed regime, scattering by disorder is taken into account to all orders. We show that, in the low density linear limit, this approach correctly describes inhomogeneous broadening of polaritons. In addition, in this limit, we extract a linear blue-shift of the lower polariton versus density, with a coefficient determined by temperature and by a characteristic disorder length.Comment: 16 pages, 11 figures; minor correction

    Interpreting the seasonal cycles of atmospheric oxygen and carbon dioxide concentrations at American Samoa Observatory

    Get PDF
    We present seven years of atmospheric O2/N2 ratio and CO2 concentration data measured from flask samples collected at American Samoa. These data are unusual, exhibiting higher short-term variability, and seasonal cycles not in phase with other sampling stations. The unique nature of atmospheric data from Samoa has been noted previously from measurements of CO2, methyl chloroform, and ozone. With our O2 data, we observe greater magnitude in the short-term variability, but, in contrast, no clear seasonal pattern to this variability. This we attribute to significant regional sources and sinks existing for O2 in both hemispheres, and a dependence on both the latitudinal and altitudinal origins of air masses. We also hypothesize that some samples exhibit a component of "older" air, demonstrating recirculation of air within the tropics. Our findings could be used to help constrain atmospheric transport models which are not well characterized in tropical regions

    Changes in column inventories of carbon and oxygen in the Atlantic Ocean

    Get PDF
    Increasing concentrations of dissolved inorganic carbon (DIC) in the interior ocean are expected as a direct consequence of increasing concentrations of CO<sub>2</sub> in the atmosphere. This extra DIC is often referred to as anthropogenic carbon (C<sub>ant</sub>), and its inventory, or increase rate, in the interior ocean has previously been estimated by a multitude of observational approaches. Each of these methods is associated with hard to test assumptions since C<sub>ant</sub> cannot be directly observed. Results from a simpler concept with fewer assumptions applied to the Atlantic Ocean are reported on here using two large data collections of carbon relevant bottle data. The change in column inventory on decadal time scales, i.e. the storage rate, of DIC, respiration compensated DIC and oxygen is calculated for the Atlantic Ocean. We report storage rates and the confidence intervals of the mean trend at the 95% level (CI), reflecting the mean trend but not considering potential biasing effects of the spatial and temporal sampling. For the whole Atlantic Ocean the mean trends for DIC and oxygen are non-zero at the 95% confidence level: DIC: 0.86 (CI: 0.72–1.00) and oxygen: −0.24 (CI: −0.41–(−0.07)) mol m<sup>−2</sup> yr<sup>−1</sup>. For oxygen, the whole Atlantic trend is dominated by the subpolar North Atlantic, whereas for other regions the O<sub>2</sub> trends are not significant. The storage rates are similar to changes found by other studies, although with large uncertainty. For the subpolar North Atlantic the storage rates show significant temporal and regional variation of all variables. This seems to be due to variations in the prevalence of subsurface water masses with different DIC and oxygen concentrations leading to sometimes different signs of storage rates for DIC compared to published C<sub>ant</sub> estimates. This study suggest that accurate assessment of the uptake of CO<sub>2</sub> by the oceans will require accounting not only for processes that influence C<sub>ant</sub> but also additional processes that modify CO<sub>2</sub> storage

    Analysis of the mean annual cycle of the dissolved oxygen anomaly in the World Ocean

    Get PDF
    A global climatology of the dissolved oxygen anomaly (the excess over saturation) is created with monthly resolution in the upper 500 m of the ocean. The climatology is based on dissolved oxygen, temperature and salinity data archived at the National Oceanographic Data Center. Examination of this climatology reveals statistically significant annual cycles throughout the upper 500 m of the World Ocean, though seasonal variations are most coherent in the North Atlantic, where data density is greatest. Vertical trends in the phase and amplitude of the annual cycle are noted. The cycle in surface waters is characterized by a summer maximum and a winter minimum, consistent with warming and high rates of photosynthesis during the summer, and cooling and entrainment of oxygen-depleted water during the winter. In low and middle latitudes, the amplitude increases with depth and the maximum occurs later in the year, a trend consistent with the seasonal accumulation of oxygen associated with the shallow oxygen maximum. At a depth that varies between about 30 and 130 m, the phase of the annual cycle undergoes an abrupt shift. We call this depth the oxygen nodal depth. Below the nodal depth, the annual cycle is characterized by an early-spring maximum and a late-fall minimum, consistent with a cycle dominated by respiration during the spring and summer and replenishment of oxygen from the atmosphere by ventilation during the fall and winter. Below the nodal depth, the amplitude of the annual cycle generally decreases with depth, indicative of decreasing respiration and ventilation rates, or less seasonality in both processes. We postulate that the nodal depth in middle and high latitudes corresponds closely to the summertime compensation depth, where photosynthesis and net community respiration are equal. With this interpretation of the nodal depth and a simple model of the penetration of light in the water column, a compensation light intensity of 1 W m−2 (4ÎŒE m−2 s−1) is deduced, at the low end of independent estimates. Horizontal trends in the phase and amplitude of the annual cycle are also noted. We find that the nodal depth decreases toward the poles in both hemispheres and is generally greater in the Southern Hemisphere, patterns found to be consistent with light-based estimates of the compensation depth. The amplitude of the annual cycle in the oxygen anomaly increases monotonically with latitude, and higher latitudes lag lower latitudes. In the North Atlantic and North Pacific, the amplitude of the annual cycle tends to increase from east to west at all depths and latitudes, as expected considering that physical forcing has greater seasonal variability in the west. The tropics and the North Indian Ocean have features that distinguish them from other regions. Below about 75 m, these waters have pronounced annual cycles of the oxygen anomaly that are shown to be caused mainly by wind-driven adiabatic displacements of the thermocline. A semiannual cycle of the oxygen anomaly is found in the surface waters of the North Indian Ocean, consistent with the known semiannual cycle of surface heat flux in this region

    Visual Mining of Epidemic Networks

    Full text link
    We show how an interactive graph visualization method based on maximal modularity clustering can be used to explore a large epidemic network. The visual representation is used to display statistical tests results that expose the relations between the propagation of HIV in a sexual contact network and the sexual orientation of the patients.Comment: 8 page

    Thermodynamics and Excitations of Condensed Polaritons in Disordered Microcavities

    Get PDF
    We study the thermodynamic condensation of microcavity polaritons using a realistic model of disorder in semiconductor quantum wells. This approach correctly describes the polariton inhomogeneous broadening in the low density limit, and treats scattering by disorder to all orders in the condensed regime. While the weak disorder changes the thermodynamic properties of the transition little, the effects of disorder in the condensed state are prominent in the excitations and can be seen in resonant Rayleigh scattering.Comment: 5 pages, 3 eps figures (published version
    • 

    corecore