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We study the thermodynamic condensation of microcavity polaritons using a realistic model of disorder
in semiconductor quantum wells. This approach correctly describes the polariton inhomogeneous broad-
ening in the low density limit, and treats scattering by disorder to all orders in the condensed regime.
While the weak disorder changes the thermodynamic properties of the transition little, the effects of
disorder in the condensed state are prominent in the excitations and can be seen in resonant Rayleigh
scattering.
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Considerable effort has been recently devoted to the
realization of a Bose-Einstein condensate of polaritons in
III-V and II-VI semiconductor microcavities [1–3]. The
very light mass of these composite bosonic particles prom-
ises relatively high transition temperatures, establishing
these systems as ideal candidates for observing condensa-
tion. A significant challenge to the realization of an equi-
librium condensate might be represented by the short
polariton lifetime (caused by the finite quality of cavity
mirrors) and by the suppression of thermalization pro-
cesses by acoustic phonons at small momenta—the ‘‘bot-
tleneck effect.’’ However, very recent developments have
suggested that, by positively detuning the cavity energy
above the exciton energy, and by increasing the nonreso-
nant pump power to increase particle-particle scattering,
thermalization can be dramatically amplified [4]. While
unambiguous evidence for equilibrium condensation still
remains uncertain, much progress has been achieved in this
direction. This includes the observation of a nonlinear
threshold behavior in the emission intensity under non-
resonant pump, the decrease, above threshold, of the sec-
ond order coherence function [2] together with a char-
acteristic change in the momentum space distribution,
and, recently, interference patterns in far-field emission
have been measured [3].

Theoretical effort has also been devoted to predicting
properties and possible signatures of polariton condensa-
tion [5,6]. In this Letter we consider how disorder, through
the distribution of excitonic energies and oscillator
strengths, affects such signatures. Even with the sophisti-
cated growth technologies used in current structures, the
presence of interface and alloy disorder induces noticeable
effects. Here, we will show that the response under reso-
nant Rayleigh scattering (RRS), the coherent scattering by
the disorder of an injected photon into directions other than
its original direction, provides a unique probe of the con-
densed regime. Already in the low density (linear) regime,
disorder determines the RRS response [7,8] and the inho-
mogeneous broadening of the polariton photolumines-
cence (PL). Using a quantitatively accurate model for the
exciton disorder [9,10] that has already been well tested in
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the linear regime of excitation, we investigate the effects of
disorder on an equilibrium polariton condensation. We find
that the thermodynamic properties of the transition are
weakly affected by small disorder, as expected. However,
at densities above the threshold expected for condensation,
the normal modes supported by the cavity change from the
lower and upper polariton modes to new collective excita-
tions [5]. Accordingly, the response of the condensate to an
additional RRS probe also changes. In noticeable contrast
with the noncondensed regime, the frequency-resolved
RRS emission from the linear Goldstone mode exists
both above and below the chemical potential. Moreover,
the spectrum exhibits features directly related to the dis-
ordered quasiparticle spectrum. Here, in analogy with the
BCS theory, the quasiparticles are given by ‘‘particle-hole’’
excitations (i.e., bound excitons) coupled to the coherent
photon field via the random, disorder dependent, oscillator
strength.

The linear response of a resonantly pumped polaritonic
system to an external disorder potential has been recently
studied in [11]. In that work, in contrast with the case
analyzed here, the coherence of the system is driven by
the pump, and moreover the effect of disorder is included
at a perturbative level.

The influence of quantum well disorder on excitonic
energies and oscillator strengths has been much studied
in the last two decades [for an exhaustive discussion see,
e.g., [9] and references therein]. Here, we assume the
disorder to be correlated on a length scale ‘c larger than
the exciton Bohr radius ax � �=e2�r, where �r is the re-
duced mass (henceforth we will set @ � 1). Accordingly,
we factorize the in-plane relative and center of mass coor-
dinates, ���re; rh� ’ ’1s�r����R�, and focus on the ex-
citonic center of mass motion,

�
�
r2

R

2mx
� V�R�

�
���R� � "����R�; (1)

where the energies are measured with respect to the exciton
band edge Ex, i.e., the band gap minus the exciton Rydberg
Rx � �2�ra2

x�
�1. The effective disorder potential V�R�
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FIG. 1 (color online). (a) Plot of the squared coupling strength
jg�;pj

2 vs energy (160 realizations of disorder) for p � 0;
(b) contour plot of the squared averaged oscillator strength
g2�"; jpj� vs energy and momentum. The resolution in momen-
tum, pstep � 2�=L � 6:3� 104 cm�1 corresponds, for a cavity
of !0�1:68 eV, to an angle of �step � tan�1�cpstep=!0� � 36�.
The free particle dispersion jpj2=2mx (solid line), and the
squared averaged oscillator strength for two values of momenta,
jpj � 0 and jpj � 10pstep (� � 82�) (plus symbols) are explic-
itly plotted.
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represents the microscopic structural disorder averaged
over the electron-hole motion [10] and can be approxi-
mated, e.g., with a Gaussian noise, hV�R�V�R0�i �
��2‘2

c=L2�
P1=‘c

q eiq��R�R0�, where L2 is the quantization
area.

Even though, in two-dimensional noninteracting sys-
tems, all states are localized by the disorder potential, the
character of the excitonic wave function changes signifi-
cantly from below to above the band edge Ex. The coupling
strength of an exciton to light changes accordingly. For
dipole-allowed transitions, the exciton oscillator strength
g�;p is proportional to the probability amplitude
’1s�0���;p of finding an electron and a hole at the same
position and with center of mass momentum equal to the
photon momentum p [9,10],

g�;p � edab

�������������
2�!p

�Lw

s
’1s�0���;p; (2)

where dab is the dipole matrix element. Here, we solve
Eq. (1) numerically on a grid of 120� 120 points (for
which convergence is reached) for a system of size L �
1 �m, � � 2 meV, and ‘c � 166 �A. From the evaluated
eigenvalues "� and eigenstates ��;p, we can derive the
excitonic density of states DoS�"�, the coupling strength
g�;p, and its squared average (Fig. 1):

g2�"; jpj� �
1

DoS�"�

�X
�

jg�;pj
2��"� "��

�
; (3)

where h. . .i is the average over different disorder realiza-
tions. This quantity is related to the excitonic optical
density by D�"� �DoS�"�g2�"; 0�.

We now consider the following Hamiltonian describing
excitons with random energies "� dipole coupled via g�;p
to the cavity field  p:

Ĥ �
X
�

"�
2
�by�b� � a�a

y
�� �

X
p
!p 

y
p p

�
1������
L2
p

X
�

X
p
�g�;p pb

y
�a� � H:c:�: (4)

Interactions are approximated by exclusion, so each ex-
citon level "� is modeled by an electron-hole pair a and b,
with the total occupation restricted to one, i.e., by�b� �
ay�a� � 1. For the thermodynamical properties of this
model (e.g., the critical temperature), this is a good as-
sumption at low enough densities, where only the strongly
localized (Lifshitz) states in the tail are populated. The
dispersion for photons in a microcavity of width Lw is
approximated as parabolic, !p ’ !0 � p2=2mph, where
!0 � 2�c=Lw

���
�
p

and mph � 2�
���
�
p
=cLw. It is convenient

to rescale the exciton-light coupling g�;p according to

g�;p � g�;p
����������������������
Rxmx=2�

p
, where N �RxL

2mx=2� is the
inverse level spacing measured in units of the excitonic
Rydberg energy. This corresponds to measuring the density
06640
of particles in units of the Bohr radius squared. In thermal
equilibrium, the total number of excitations, N̂ �P
��b

y
�b� � a�a

y
��=2�

P
p 
y
p p, can be fixed by intro-

ducing a chemical potential, �. The dimensionless density
� � hN̂i=N corresponds to �hN̂i=L2�a2

x4��r=mx, where
hN̂i=L2 is the density of particles per area.

Making use of standard path integral techniques, the
mean-field equations for the static and uniform photon
field  and for the total number of excitations can be
simultaneously solved in a similar way as in Refs. [5,12].
However, in contrast to previous work, we introduce here a
realistic description for the excitons in the disordered
quantum wells and make use of the energies and coupling
strengths evaluated numerically. In addition, the average
over different disorder realizations outside the energy in-
terval evaluated numerically [Fig. 1(a)] is taken by extrap-
olating the numerics: in the low energy Lifshitz tail, we
approximate the distribution of jg�;0j2 with a delta function
at its extrapolated mean value g2�"; 0�, while, in the high
energy region, we use the Porter-Thomas distribution
P �x�jg�;0j

2�� exp	�x=�2�x�
=
������������
2�x �x
p

, where �x �
g2�"; 0�. The scale of jg�;0j2 is set so as to fix the integrated
optical density

R
d"D�"� � �2

R=4, where �R is the mea-
sured Rabi splitting. In the resulting mean-field phase
diagram (Fig. 2), increasing the density of particles at a
5-2
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given temperature, the system goes under a phase transi-
tion from a noncondensed phase ( � 0) to a phase where
the polaritons condense in the lowest momentum state
( � 0).

The incoherent PL spectrum and the RRS response are
evaluated by considering fluctuations of the photonic field
above the mean-field solution:

�S’
1

2kBT

X
!h;p;q

� �!h;p

� �!h;�p

 !
T

G�1
pq �!h�

� !;q
� ��!h;�q

 !

G�1
pq �!h��

K�1�pq�!h� K
�2�
pq�!h�

K�2�pq�!h� K
�1��
pq �!h�

0
@

1
A: (5)

Here, when!h � 2�kBTh � 0, the matrix elements of the
inverse quasiparticle Green’s function are given by

K�1�pq�!h� � �p;q�i!h � ~!p� �
1

N

X
�

g��;pg�;q

� 	i!h~"�=2� E2
� � �~"�=2�2
h�E�� (6)

K�2�pq�!h� �
 2

N
1

N

X
�

jg�;0j
2g��;pg�;qh�E��; (7)

where h�x� � tanh�x=kBT�=	x�!
2
h � 4x2�
,

E� �
������������������������������������������������
�~"�=2�2 � jg�;0j

2 2=N
q

is the energy of an exciton in a coherent field, ~"� � "� �
�, and ~!p � !p ��. The quasiparticle Green’s function
can be decomposed into (momentum) diagonal and off-
diagonal contributions, K�1;2�pq � K�1;2�dpq �pq � K

�1;2�o
pq . The

off-diagonal terms, as they break translational invariance
and therefore have a zero average over different disorder
realizations, can be neglected when evaluating the inco-
herent PL intensity [13], P�!;p� � nB�!�W�!;p�, where
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FIG. 2. Mean-field phase diagram for the dimensionless criti-
cal temperature 2TckB=�R vs the dimensionless density � for
effective zero detuning !0 � Ex � �0:94 meV and �R �
26 meV. A detail of the low density region is shown in the inset
(a), while the plot of the mean-field order parameter  =

����
N
p

vs
the density for TkB � 20 K (2TkB=�R � 0:13) is shown in the
inset (b).
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nB�!� is the Bose occupation factor and

W�!;p� � 2 ImG11
pp�!h�ji!h��!�i	 (8)

is the spectral weight. However, allowing the normal
modes supported by the cavity to scatter via their excitonic
component in directions different from the incoming one,
these terms are essential in finding the RRS intensity:

Ipq�!� � jG
11
pq�!h�j

2ji!h��!�i	 ’ FpSpqFq: (9)

Here, the filter function Fp � jjK
�1�
ppj

2 � 	K�2�pp

2j�2 de-

scribes the propagation of the injected and detected pho-
tons via the normal modes supported by the cavity, while
the scattering function Spq

Spq � jK
�1�o
pq K�1��pp K

�1��
qq � K

�1�O�
qp K�2�ppK

�2�
qq

� K�2�opq 	K
�2�
ppK

�1��
qq � K

�1��
pp K

�2�
qq
j

2 (10)

describes the probability to scatter, via the excitonic com-
ponent, from the injected momentum p to the detected one
q. The incoherent PL P�!;p� and spectral weightW�!;p�,
as also the disorder averaged RRS response hIpq�!�i, are
shown in Fig. 3 for two values of the density at a fixed
temperature, showing both the noncondensed [Figs. 3(a),
3(c), and 3(e)] and condensed case [Figs. 3(b), 3(d), and
3(f)].

The RRS signal reflects many of the features already
present in the spectral weight. The similarity is due to the
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FIG. 3 (color online). Contour plot of the incoherent PL
P�!;p� (a), (b), the spectral weight W�!;p� (c), (d), and the
disorder averaged RRS intensity hIpq�!�i for jpj � jqj (e), (f) vs
the rescaled energy 2�!���=�R and the dimensionless mo-
mentum jpjax, for !0 � Ex � �0:94 meV, �R � 26 meV,
kBT � 20 K: noncondensed (left column) (� ’ 0, � �
�16:5 meV) and condensed (right column) (� � 3:6� 10�3,
� � �11:3 meV).
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filter functions, which limit the RRS response to the nor-
mal modes supported by the cavity and are responsible for
the ring-shaped emission observed in experiments [7,8].
When uncondensed ( ! 0), K�2� � 0, the filter terms
jK�1�dj�2 coincide with the squared polariton Green’s func-
tion and the scattering term jK�1�oj2 gives the probability
for an exciton to scatter from p to q. At ultralow densities,
the model used here is equivalent to that used in Ref. [13]
and the RRS response is in agreement with that of
Refs. [14,15]. However, when condensed, the polariton
modes are replaced by new collective modes, the lower
polariton becomes a linear Goldstone mode, and two new
branches appear below the chemical potential, which are
seen as gain in the spectral weight. These changes are also
seen in the RRS response, including RRS response at
energies below the chemical potential [Fig. 3(f)].

These noticeable changes could be observed in both PL
emission, the product of the spectral weight times the Bose
occupation factor nB�!�, and the RRS response. However,
because of the occupation factor, PL emission from above
the chemical potential is exponentially suppressed. In ad-
dition, the PL as it is plotted in Fig. 3 excludes the emission
from the condensate, which in experiments might obscure
these features. In contrast, RRS response is not weighted
by occupation, but instead by the scattering function, Spq,
which depends on the modulus squared of the Green’s
function for an exciton in a coherent field. As a conse-
quence, RRS represents a unique probe for observing con-
densation in polariton microcavities.

Using the full distribution of oscillator strengths has
observable effects in the condensed state and is vital in
our treatment. When uncondensed, while the spectral
weight depends only on the excitonic optical density (and
thus on the average of jg�;0j2), the RRS depends also on
jg�;0j4. This determines a sharper energy dependence in
RRS than in optical density. However, when condensed,
both optical responses are determined by the full distribu-
tion of oscillator strengths, rather than only the mean
squared oscillator strength and its mean fourth power.
This is because the energy E� of an exciton in the presence
of a coherent field leads to a dependence on the full
distribution of jg�;0j. The density of states of these exci-
tonic quasiparticles can be directly seen in the spectral
weight between the upper and lower polariton modes.
With a constant g, the minimum of E� is sharp, occurring
for excitons where ~"� � 0. In contrast, with the distribu-
tion of jg�;0j used here, the minimum of E� occurs for
states where there is first a finite probability of having
negligible coupling to light. Below this energy, other
than the linear mode, there is a suppression of the spectral
weight. The energy dependence of the distribution of cou-
pling strengths is also important, and is responsible for the
decrease of polariton splitting at higher densities. As the
chemical potential increases, the excitons with energies
close to the chemical potential couple less strongly to light,
and the effective splitting decreases.
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The treatment in this Letter considers only disorder act-
ing on the excitons; it has been suggested [8,16] that
disorder of the mirrors, acting on the photons might also
be relevant. The inclusion of such disorder can be expected
to modify the scattering term, but the filter functions are
expected to remain unaffected.

To conclude, we have described how polariton conden-
sation in semiconductor microcavities can be investigated
by RRS. By making use of a realistic model of disorder in
quantum wells, we identified the changes which can be
observed in the RRS spectrum when, with increasing den-
sity, the system, still in the strong coupling regime, crosses
the phase boundary to a condensed state. Because RRS, in
contrast to PL, is not weighted by the Bose factor, and
because RRS does not contain a strong signal at the con-
densate frequency, which could obscure the subtle features
in PL, RRS provides a promising probe of polariton con-
densation in semiconductor microcavities.
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