3,217 research outputs found

    Distance Protection of Cross-Bonded Transmission Cable-Systems

    Get PDF

    Wildlife friendly agriculture: which factors do really matter? A genetic study on field vole

    Get PDF
    The distribution of genetic differentiation and the directions of gene flow were determined mainly by landscape factors: thus the expectation that organic fields act as genetic reservoir was not met. The fact that agricultural area presented more sub-populations than the undisturbed one, together with the importance of connectivity and habitat size in shaping gene flow and genetic differentiation, shows that switching to organic farming might not be enough to ensure the conservation of species in the agricultural environment. These results emphasise the need to include landscape structure in management policies

    Stop-and-go kinetics in amyloid fibrillation

    Get PDF
    Many human diseases are associated with protein aggregation and fibrillation. Using glucagon as a model system for protein fibrillation we show that fibrils grow in an intermittent fashion, with periods of growth followed by long pauses. Remarkably, even if the intrinsic transition rates vary considerably in each experiment, the probability of being in the growing (stopping) state is very close to 1/4 (3/4), suggesting the presence of 4 independent conformations of the fibril tip. We discuss this possibility in terms of existing structural knowledge

    Critical manifold of the kagome-lattice Potts model

    Full text link
    Any two-dimensional infinite regular lattice G can be produced by tiling the plane with a finite subgraph B of G; we call B a basis of G. We introduce a two-parameter graph polynomial P_B(q,v) that depends on B and its embedding in G. The algebraic curve P_B(q,v) = 0 is shown to provide an approximation to the critical manifold of the q-state Potts model, with coupling v = exp(K)-1, defined on G. This curve predicts the phase diagram both in the ferromagnetic (v>0) and antiferromagnetic (v<0) regions. For larger bases B the approximations become increasingly accurate, and we conjecture that P_B(q,v) = 0 provides the exact critical manifold in the limit of infinite B. Furthermore, for some lattices G, or for the Ising model (q=2) on any G, P_B(q,v) factorises for any choice of B: the zero set of the recurrent factor then provides the exact critical manifold. In this sense, the computation of P_B(q,v) can be used to detect exact solvability of the Potts model on G. We illustrate the method for the square lattice, where the Potts model has been exactly solved, and the kagome lattice, where it has not. For the square lattice we correctly reproduce the known phase diagram, including the antiferromagnetic transition and the singularities in the Berker-Kadanoff phase. For the kagome lattice, taking the smallest basis with six edges we recover a well-known (but now refuted) conjecture of F.Y. Wu. Larger bases provide successive improvements on this formula, giving a natural extension of Wu's approach. The polynomial predictions are in excellent agreement with numerical computations. For v>0 the accuracy of the predicted critical coupling v_c is of the order 10^{-4} or 10^{-5} for the 6-edge basis, and improves to 10^{-6} or 10^{-7} for the largest basis studied (with 36 edges).Comment: 31 pages, 12 figure

    Stars on the edge: Galactic tides and the outskirts of the Sculptor dwarf spheroidal

    Full text link
    Stars far beyond the half-light radius of a galaxy suggest the existence of a mechanism able to move stars out of the region where most star formation has taken place. The formation of these "stellar halos" are usually ascribed to the effects of early mergers or Galactic tides, although fluctuations in the gravitational potential due to stellar feedback is also a possible candidate mechanism. A Bayesian algorithm is used to find new candidate members in the extreme outskirts of the Sculptor dwarf galaxy. Precise metallicities and radial velocities for two distant stars are measured from their spectra taken with the Gemini South GMOS spectrograph. The radial velocity, proper motion and metallicity of these targets are consistent with Sculptor membership. As a result, the known boundary of the Sculptor dwarf extends now out to an elliptical distance of ∟10\sim10 half-light radii, which corresponds to a projected physical distance of ∟3\sim3 kpc. As reported in earlier work, the overall distribution of radial velocities and metallicities indicate the presence of a more spatially and kinematically dispersed metal-poor population that surrounds the more concentrated and colder metal-rich stars. Sculptor's density profile shows a "kink" in its logarithmic slope at a projected distance of ∟25\sim25 arcmin (620 pc), which we interpret as evidence that Galactic tides have helped to populate the distant outskirts of the dwarf. We discuss further ways to test and validate this tidal interpretation for the origin of these distant stars.Comment: 10 pages, 4 figures, submitted to MNRA

    Prediction: coveted, yet forsaken? Introducing a cross-validated predictive ability test in partial least squares path modeling

    Get PDF
    Management researchers often develop theories and policies that are forward‐looking. The prospective outlook of predictive modeling, where a model predicts unseen or new data, can complement the retrospective nature of causal‐explanatory modeling that dominates the field. Partial least squares (PLS) path modeling is an excellent tool for building theories that offer both explanation and prediction. A limitation of PLS, however, is the lack of a statistical test to assess whether a proposed or alternative theoretical model offers significantly better out‐of‐sample predictive power than a benchmark or an established model. Such an assessment of predictive power is essential for theory development and validation, and for selecting a model on which to base managerial and policy decisions. We introduce the cross‐validated predictive ability test (CVPAT) to conduct a pairwise comparison of predictive power of competing models, and substantiate its performance via multiple Monte Carlo studies. We propose a stepwise predictive model comparison procedure to guide researchers, and demonstrate CVPAT's practical utility using the well‐known American Customer Satisfaction Index (ACSI) model

    Screening of Spherical Colloids beyond Mean Field -- A Local Density Functional Approach

    Get PDF
    We study the counterion distribution around a spherical macroion and its osmotic pressure in the framework of the recently developed Debye-H"uckel-Hole-Cavity (DHHC) theory. This is a local density functional approach which incorporates correlations into Poisson-Boltzmann theory by adding a free energy correction based on the One Component Plasma. We compare the predictions for ion distribution and osmotic pressure obtained by the full theory and by its zero temperature limit with Monte Carlo simulations. They agree excellently for weakly developed correlations and give the correct trend for stronger ones. In all investigated cases the DHHC theory and its computationally simpler zero temperature limit yield better results than the Poisson-Boltzmann theory.Comment: 10 pages, 4 figures, 2 tables, RevTeX4-styl
    • …
    corecore