616 research outputs found

    Simultaneous imaging of a lacZ-marked tumor and microvasculature morphology in vivo by dual-wavelength photoacoustic microscopy

    Get PDF
    Photoacoustic molecular imaging, combined with the reporter-gene technique, can provide a valuable tool for cancer research. The expression of the lacZ reporter gene can be imaged using photoacoustic imaging following the injection of X-gal, a colorimetric assay for the lacZ-encoded enzyme β-galactosidase. Dual-wavelength photoacoustic microscopy was used to non-invasively image the detailed morphology of a lacZ-marked 9L gliosarcoma and its surrounding microvasculature simultaneously in vivo, with a superior resolution on the order of 10 μm. Tumor-feeding vessels were found, and the expression level of lacZ in tumor was estimated. With future development of new absorption-enhancing reporter-gene systems, we anticipate this strategy can lead to a better understanding of the role of tumor metabolism in cancer initiation, progression, and metastasis, and in its response to therapy

    Simultaneous imaging of a lacZ-marked tumor and microvasculature morphology in vivo by dual-wavelength photoacoustic microscopy

    Get PDF
    Photoacoustic molecular imaging, combined with the reporter-gene technique, can provide a valuable tool for cancer research. The expression of the lacZ reporter gene can be imaged using photoacoustic imaging following the injection of X-gal, a colorimetric assay for the lacZ-encoded enzyme β-galactosidase. Dual-wavelength photoacoustic microscopy was used to non-invasively image the detailed morphology of a lacZ-marked 9L gliosarcoma and its surrounding microvasculature simultaneously in vivo, with a superior resolution on the order of 10 μm. Tumor-feeding vessels were found, and the expression level of lacZ in tumor was estimated. With future development of new absorption-enhancing reporter-gene systems, we anticipate this strategy can lead to a better understanding of the role of tumor metabolism in cancer initiation, progression, and metastasis, and in its response to therapy

    Dark Matter Direct Detection with Non-Maxwellian Velocity Structure

    Full text link
    The velocity distribution function of dark matter particles is expected to show significant departures from a Maxwell-Boltzmann distribution. This can have profound effects on the predicted dark matter - nucleon scattering rates in direct detection experiments, especially for dark matter models in which the scattering is sensitive to the high velocity tail of the distribution, such as inelastic dark matter (iDM) or light (few GeV) dark matter (LDM), and for experiments that require high energy recoil events, such as many directionally sensitive experiments. Here we determine the velocity distribution functions from two of the highest resolution numerical simulations of Galactic dark matter structure (Via Lactea II and GHALO), and study the effects for these scenarios. For directional detection, we find that the observed departures from Maxwell-Boltzmann increase the contrast of the signal and change the typical direction of incoming DM particles. For iDM, the expected signals at direct detection experiments are changed dramatically: the annual modulation can be enhanced by more than a factor two, and the relative rates of DAMA compared to CDMS can change by an order of magnitude, while those compared to CRESST can change by a factor of two. The spectrum of the signal can also change dramatically, with many features arising due to substructure. For LDM the spectral effects are smaller, but changes do arise that improve the compatibility with existing experiments. We find that the phase of the modulation can depend upon energy, which would help discriminate against background should it be found.Comment: 34 pages, 16 figures, submitted to JCAP. Tables of g(v_min), the integral of f(v)/v from v_min to infinity, derived from our simulations, are available for download at http://astro.berkeley.edu/~mqk/dmdd

    Potential climatic transitions with profound impact on Europe

    Get PDF
    We discuss potential transitions of six climatic subsystems with large-scale impact on Europe, sometimes denoted as tipping elements. These are the ice sheets on Greenland and West Antarctica, the Atlantic thermohaline circulation, Arctic sea ice, Alpine glaciers and northern hemisphere stratospheric ozone. Each system is represented by co-authors actively publishing in the corresponding field. For each subsystem we summarize the mechanism of a potential transition in a warmer climate along with its impact on Europe and assess the likelihood for such a transition based on published scientific literature. As a summary, the ‘tipping’ potential for each system is provided as a function of global mean temperature increase which required some subjective interpretation of scientific facts by the authors and should be considered as a snapshot of our current understanding. <br/

    N-body simulations of gravitational dynamics

    Full text link
    We describe the astrophysical and numerical basis of N-body simulations, both of collisional stellar systems (dense star clusters and galactic centres) and collisionless stellar dynamics (galaxies and large-scale structure). We explain and discuss the state-of-the-art algorithms used for these quite different regimes, attempt to give a fair critique, and point out possible directions of future improvement and development. We briefly touch upon the history of N-body simulations and their most important results.Comment: invited review (28 pages), to appear in European Physics Journal Plu

    Measurement of Mass and Width of the W Boson at LEP

    Get PDF
    We report on measurements of the mass and total decay width of the W boson with the L3 detector at LEP. W-pair events produced in e+e\mathrm{e^+e^-} interactions between 161 GeV and 183 GeV centre-of-mass energy are selected in a data sample corresponding to a total luminosity of 76.7 pb1^{-1}. Combining all final states in W-pair production, the mass and total decay width of the W boson are determined to be MW=80.61±0.15\mathrm{M_W}=80.61\pm0.15 GeV and ΓW=1.97±0.38\Gamma_{\mathrm{W}}=1.97\pm0.38 GeV, respectively

    A Protein Inventory of Human Ribosome Biogenesis Reveals an Essential Function of Exportin 5 in 60S Subunit Export

    Get PDF
    A systematic search for human ribosome biogenesis factors shows conservation of many aspects of eukaryotic ribosome synthesis with the well-studied process in yeast and identifies an export route of 60S subunits that is specific for higher eukaryotes

    Determination of the number of light neutrino species from single photon production at LEP

    Get PDF
    A determination of the number of light neutrino families performed by measuring the cross section of single photon production in e+e- collision near the Z resonance is reported. From an integrated luminosity of 100 pb-1, collected during the years 1991-94, we have observed 2091 single photon candidates with an energy above 1 GeV in the polar angular region 45&#176; &lt;&#952;&#947; &lt;135&#176;. From a maximum likelihood fit to the single photon cross section, the Z decay width into invisible particles is measured to be &#8968;inv=498&#177; 12(stat)&#177; 12(sys) MeV. Using the Standard Model couplings of neutrinos to the Z, the number of light neutrino species is determined to be Nv=2.98&#177; 0.07(stat)&#177; 0.07(sys)
    corecore