1,303 research outputs found

    Quasi-Lie schemes and Emden--Fowler equations

    Full text link
    The recently developed theory of quasi-Lie schemes is studied and applied to investigate several equations of Emden type and a scheme to deal with them and some of their generalisations is given. As a first result we obtain t-dependent constants of the motion for particular instances of Emden equations by means of some of their particular solutions. Previously known results are recovered from this new perspective. Finally some t-dependent constants of the motion for equations of Emden type satisfying certain conditions are recovered

    Calixarene-decorated liposomes for intracellular cargo delivery

    Get PDF
    Amphiphilic calix[4]arenes, functionalized with guanidinium groups, are used to decorate the outer surface of liposomes and significantly improve the cellular uptake of a cargo compared to plain liposomes. The improved uptake is elicited and mediated by the interaction between the cationic polar heads of the macrocycle units embedded in the liposome bilayer and anionic heparan-sulfate proteoglycans surrounding the exterior of cells

    Attosecond electron spectroscopy using a novel interferometric pump-probe technique

    Get PDF
    We present an interferometric pump-probe technique for the characterization of attosecond electron wave packets (WPs) that uses a free WP as a reference to measure a bound WP. We demonstrate our method by exciting helium atoms using an attosecond pulse with a bandwidth centered near the ionization threshold, thus creating both a bound and a free WP simultaneously. After a variable delay, the bound WP is ionized by a few-cycle infrared laser precisely synchronized to the original attosecond pulse. By measuring the delay-dependent photoelectron spectrum we obtain an interferogram that contains both quantum beats as well as multi-path interference. Analysis of the interferogram allows us to determine the bound WP components with a spectral resolution much better than the inverse of the attosecond pulse duration.Comment: 5 pages, 4 figure

    Multiworm algorithm quantum Monte Carlo

    Full text link
    We review the path-integral quantum Monte Carlo method and discuss its implementation by multiworm algorithms. We analyze in details the features of the algorithms, and focus our attention on the computation of the NN-body density matrix to study N-body correlations. Finally, we demonstrate the validity of the algorithms on a system of dipolar bosons trapped in a stack of NN one-dimensional layers in the case of zero and finite inter-layer hopping.Comment: 20 pages, 10 figure

    The direct evaluation of attosecond chirp from a streaking measurement

    Full text link
    We derive an analytical expression, from classical electron trajectories in a laser field, that relates the breadth of a streaked photoelectron spectrum to the group-delay dispersion of an isolated attosecond pulse. Based on this analytical expression, we introduce a simple, efficient and robust procedure to instantly extract the attosecond pulse's chirp from the streaking measurement.Comment: 4 figure

    Extremely fast triplet formation by charge recombination in a Nile Red/fullerene flexible dyad

    Get PDF
    A donor/acceptor dyad was obtained by linking Nile Red and fullerene to a calix[4]arene scaffold. The dyad was spectroscopically characterized, both with steady-state and ultrafast transient absorption experiments, as well as with electrochemical and spectroelectrochemical techniques. We demonstrate extremely fast and efficient formation of a long-lived excited triplet localized on the fullerene moiety in this system, occurring in about 80 ps in toluene and 220 ps in chloroform. The mechanism of this process is investigated and discussed. The spectroscopic and electrochemical characterization suggests the occurrence of electron transfer from Nile Red to fullerene, leading to the formation of a charge-separated state. This state lives very briefly and, because of the small interaction between the electron donor and acceptor, promotes a singlet/triplet state mixing, inducing charge recombination and efficient triplet formation

    Quantum Phases of Dipolar Bosons in Bilayer Geometry

    Get PDF
    We investigate the quantum phases of hard-core dipolar bosons confined to a square lattice in a bilayer geometry. Using exact theoretical techniques, we discuss the many-body effects resulting from pairing of particles across layers at finite density, including a novel pair supersolid phase, superfluid and solid phases. These results are of direct relevance to experiments with polar molecules and atoms with large magnetic dipole moments trapped in optical lattices.Comment: 7 pages, 5 figure

    Do grade II ankle sprains have chronic effects on the functional ability of ballet dancers performing single-leg flat-foot stance? An observational cross-sectional study

    Get PDF
    Ballet dancers have a higher risk than the general population of ankle sprains. Ankle proprioception is of the utmost importance for executing static and dynamic positions typical of ballet dancing. Ankle sprains can create changes in functional ability that may affect ballet performance. The aim of this cross-sectional observational study is to evaluate if non-professional ballet dancers that were previously injured with a grade II ankle sprain carry a long-term stability deficit in ballet specific positions (pass\ue9, arabesque) and in single-leg flat-foot stance, thereby affecting ballet performance. We enrolled 22 amateur female ballet dancers, 11 who previously had a grade II ankle injury and 11 who had no history of ankle injury. Stabilometric data (Center of Pressure Speed and Elipse Area) were assessed with the postural electronic multisensory baropodometer in normal, arabesque, and pass\ue8 positions with both open and closed eyes. Using an unpaired t-test, we compared healthy and pathological feet of the ankle injury group for a standard monopodalic position and two ballet-specific positions. No difference between pathological and healthy feet of non-professional ballet dancers who suffered grade II ankle injury was detected. According to the parameters considered in this study, grade II ankle sprains seem to have a favorable prognosis in the sample that we evaluated

    Efficient Delivery of MicroRNA and AntimiRNA Molecules Using an Argininocalix[4]arene Macrocycle

    Get PDF
    MicroRNAs (miRNAs) are short non-coding RNA molecules acting as gene regulators by repressing translation or by inducing degradation of the target RNA transcripts. Altered expression of miRNAs may be involved in the pathogenesis of many severe human diseases, opening new avenues in the field of therapeutic strategies, i.e., miRNA targeting or miRNA mimicking. In this context, the efficient and non-toxic delivery of premiRNA and antimiRNA molecules might be of great interest. The aim of the present paper is to determine whether an argininocalix[4]arene is able to efficiently deliver miRNA, premiRNA, and antimiRNA molecules to target cells, preserving their biological activity. This study points out that (1) the toxicity of argininocalix[4]arene 1 is low, and it can be proposed for long-term treatment of target cells, being that this feature is a pre-requisite for the development of therapeutic protocols; (2) the delivery of premiRNA and antimiRNA molecules is efficient, being higher when compared with reference gold standards available; and (3) the biological activity of the premiRNAs and antimiRNAs is maintained. This was demonstrated using the argininocalix[4]arene 1 in miRNA therapeutic approaches performed on three well-described experimental model systems: (1) the induction of apoptosis by antimiR-221 in glioma U251 cells; (2) the induction of apoptosis by premiR-124 in U251 cells; and (3) the inhibition of pro-inflammatory IL-8 and IL-6 genes in cystic fibrosis IB3-1 cells. Our results demonstrate that the argininocalix[4]arene 1 should be considered a very useful delivery system for efficient transfer to target cells of both premiRNA and antimiRNA molecules, preserving their biological activity
    • …
    corecore