396 research outputs found
New U-Pb SHRIMP zircon ages for pre-variscan orthogneisses from Portugal and their bearing on the evolution of the Ossa-morena tectonic zone
New SHRIMP U-Pb zircon ages for the Portalegre and Alcáçovas orthogneisses document a complex pre-Variscan history for the Iberian basement in Portugal. The available geochemical and geochronological data for the Alcáçovas orthogneiss (ca. 540 Ma) tend to favor its involvement in a Cadomian orogenic event. This is consistent with the development of an active continental margin setting at the end of the Proterozoic and supports a Gondwanan provenance for the Iberian crust. On the other hand, the Ordovician emplacement age obtained for the magmatic precursors of the Portalegre orthogneisses (497 ± 10 Ma) provides additional evidence for the occurrence of rift-related magmatic activity during the Lower Paleozoic
Earth's oldest mantle fabrics indicate Eoarchaean subduction
The extension of subduction processes into the Eoarchaean era (4.0-3.6 Ga) is controversial. The oldest reported terrestrial olivine, from two dunite lenses within the ~3,720 Ma Isua supracrustal belt in Greenland, record a shape-preferred orientation of olivine crystals defining a weak foliation and a well-defined lattice-preferred orientation (LPO). [001] parallel to the maximum finite elongation direction and (010) perpendicular to the foliation plane define a B-type LPO. In the modern Earth such fabrics are associated with deformation of mantle rocks in the hanging wall of subduction systems; an interpretation supported by experiments. Here we show that the presence of B-type fabrics in the studied Isua dunites is consistent with a mantle origin and a supra-subduction mantle wedge setting, the latter supported by compositional data from nearby mafic rocks. Our results provide independent microstructural data consistent with the operation of Eoarchaean subduction and indicate that microstructural analyses of ancient ultramafic rocks provide a valuable record of Archaean geodynamics
Toll-Like Receptor- and Filarial Antigen-Mediated, Mitogen-Activated Protein Kinase- and NF-κB-Dependent Regulation of Angiogenic Growth Factors in Filarial Lymphatic Pathology
Filarial lymphatic pathology is of multifactorial origin, with inflammation, lymphangiogenesis, and innate immune responses all playing important roles. The role of Toll-like receptors (TLRs) in the development of filarial pathology is well characterized. Similarly, the association of pathology with elevated levels of plasma angiogenic factors has also been documented. To examine the association between TLR function and the development of lymphangiogenesis in filarial infections, we examined TLR- and filarial antigen-induced expression and production of various angiogenic growth factors. We demonstrate that TLR ligands (specifically TLR2, -3, and -5 ligands) induce significantly increased expression/production of vascular endothelial growth factor A (VEGF-A) and angiopoietin-1 (Ang-1) in the peripheral blood mononuclear cells of individuals with lymphatic pathology (CP individuals) compared to that in cells of asymptomatic infected (INF) individuals. Similarly, filarial antigens induce significantly enhanced production of VEGF-C in CP compared with INF individuals. TLR2-mediated enhancement of angiogenic growth factor production in CP individuals was shown to be dependent on mitogen-activated protein kinase (MAPK) and NF-κB signaling, as pharmacologic inhibition of either extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAPK, or NF-κB signaling resulted in significantly diminished production of VEGF-A and Ang-1. Our data therefore strongly suggest an important association between TLR signaling and lymphangiogenesis in the development of pathology in human lymphatic filariasis
Macrophage-derived human resistin is induced in multiple helminth infections and promotes inflammatory monocytes and increased parasite burden.
Parasitic helminth infections can be associated with lifelong morbidity such as immune-mediated organ failure. A better understanding of the host immune response to helminths could provide new avenues to promote parasite clearance and/or alleviate infection-associated morbidity. Murine resistin-like molecules (RELM) exhibit pleiotropic functions following helminth infection including modulating the host immune response; however, the relevance of human RELM proteins in helminth infection is unknown. To examine the function of human resistin (hResistin), we utilized transgenic mice expressing the human resistin gene (hRetnTg+). Following infection with the helminth Nippostrongylus brasiliensis (Nb), hResistin expression was significantly upregulated in infected tissue. Compared to control hRetnTg- mice, hRetnTg+ mice suffered from exacerbated Nb-induced inflammation characterized by weight loss and increased infiltration of inflammatory monocytes in the lung, along with elevated Nb egg burdens and delayed parasite expulsion. Genome-wide transcriptional profiling of the infected tissue revealed that hResistin promoted expression of proinflammatory cytokines and genes downstream of toll-like receptor signaling. Moreover, hResistin preferentially bound lung monocytes, and exogenous treatment of mice with recombinant hResistin promoted monocyte recruitment and proinflammatory cytokine expression. In human studies, increased serum resistin was associated with higher parasite load in individuals infected with soil-transmitted helminths or filarial nematode Wuchereria bancrofti, and was positively correlated with proinflammatory cytokines. Together, these studies identify human resistin as a detrimental factor induced by multiple helminth infections, where it promotes proinflammatory cytokines and impedes parasite clearance. Targeting the resistin/proinflammatory cytokine immune axis may provide new diagnostic or treatment strategies for helminth infection and associated immune-mediated pathology
Lack of Evidence for the Direct Activation of Endothelial Cells by Adult Female and Microfilarial Excretory-Secretory Products
Lymphangiectasia (dilation of the lymphatic vessel (LV)) is pathognomonic for lymphatic filariasis. In both infected humans and animal models of infection, lymphangiectasia is not restricted to the site of the worm nest, but is found along the infected vessel. These observations argue that soluble products secreted by the worm could be mediating this effect by activating the lymphatic endothelial cells (LEC) lining the vessel. We tested the ability of filarial Excretory-Secretory products to activate LECs, but were unable to detect a direct effect of the Excretory-Secretory products on the activation of LEC as assessed by a variety of approaches including cellular proliferation, cell surface molecule expression and cytokine and growth factor production (although other mediators used as positive controls did induce these effects). Collectively, these results do not support the hypothesis that Excretory-Secretory products directly activate LECs
Altered T Cell Memory and Effector Cell Development in Chronic Lymphatic Filarial Infection That Is Independent of Persistent Parasite Antigen
Chronic lymphatic filarial (LF) infection is associated with suppression of parasite-specific T cell responses that persist even following elimination of infection. While several mechanisms have been implicated in mediating this T cell specific downregulation, a role for alterations in the homeostasis of T effector and memory cell populations has not been explored. Using multiparameter flow cytometry, we investigated the role of persistent filarial infection on the maintenance of T cell memory in patients from the filarial-endemic Cook Islands. Compared to filarial-uninfected endemic normals (EN), microfilaria (mf) positive infected patients (Inf) had a reduced CD4 central memory (TCM) compartment. In addition, Inf patients tended to have more effector memory cells (TEM) and fewer effector cells (TEFF) than did ENs giving significantly smaller TEFF ∶ TEM ratios. These contracted TCM and TEFF populations were still evident in patients previously mf+ who had cleared their infection (CLInf). Moreover, the density of IL-7Rα, necessary for T memory cell maintenance (but decreased in T effector cells), was significantly higher on memory cells of Inf and CLInf patients, although there was no evidence for decreased IL-7 or increased soluble IL7-Rα, both possible mechanisms for signaling defects in memory cells. However, effector cells that were present in Inf and CLInf patients had lower percentages of HLA-DR suggesting impaired function. These changes in T cell populations appear to reflect chronicity of infection, as filarial-infected children, despite the presence of active infection, did not show alterations in the frequencies of these T cell phenotypes. These data indicate that filarial-infected patients have contracted TCM compartments and a defect in effector cell development, defects that persist even following clearance of infection. The fact that these global changes in memory and effector cell compartments do not yet occur in infected children makes early treatment of LF even more crucial
Recommended from our members
Is there sufficient Ensifer and Rhizobium species diversity in UK farmland soils to support red clover (Trifolium pratense), white clover (T. repens), lucerne (Medicago sativa) and black medic (M. lupulina)?
Rhizobia play important roles in agriculture owing to their ability to fix nitrogen through a symbiosis with legumes. The specificity of rhizobia-legume associations means that underused legume species may depend on seed inoculation with their rhizobial partners. For black medic (Medicago lupulina) and lucerne (Medicago sativa) little is known about the natural prevalence of their rhizobial partner Ensifer meliloti in UK soils, so that the need for inoculating them is unclear. We analysed the site-dependence of rhizobial seed inoculation effects on the subsequent ability of rhizobial communities to form symbioses with four legume species (Medicago lupulina, M. sativa, Trifolium repens and T. pratense). At ten organic farms across the UK, a species-diverse legume based mixture (LBM) which included these four species was grown. The LBM seed was inoculated with a mix of commercial inocula specific for clover and lucerne. At each site, soil from the LBM treatment was compared to the soil sampled prior to the sowing of the LBM (the control). From each site and each of the two treatments, a suspension of soils was applied to seedlings of the four legume species and grown in axenic conditions for six weeks. Root nodules were counted and their rhizobia isolated. PCR and sequencing of a fragment of the gyrB gene from rhizobial isolates allowed identification of strains. The number of nodules on each of the four legume species was significantly increased when inoculated with soil from the LBM treatment compared to the control. Both the proportion of plants forming nodules and the number of nodules formed varied significantly by site, with sites significantly affecting the Medicago species but not the Trifolium species. These differences in nodulation were broadly reflected in plant biomass where site and treatment interacted; at some sites there was a significant advantage from inoculation with the commercial inoculum but not at others. In particular, this study has demonstrated the commercial merit of inoculation of lucerne with compatible rhizobia
- …