59 research outputs found

    Barriers to sEMG assessment during overground robot-assisted gait training in subacute stroke patients

    Get PDF
    Background: The limitation to the use of ElectroMyoGraphy (sEMG) in rehabilitation services is in contrast with its potential diagnostic capacity for rational planning and monitoring of the rehabilitation treatments, especially the overground Robot-Assisted Gait Training (o-RAGT). Objective: To assess the barriers to the implementation of a sEMG-based assessment protocol in a clinical context for evaluating the effects of o-RAGT in subacute stroke patients. Methods: Anobservationalstudywasconductedinarehabilitationhospital.Theprimary outcome was the success rate of the implementation of the sEMG-based assessment. The number of dropouts and the motivations have been registered. A detailed report on difficulties in implementing the sEMG protocol has been edited for each patient. The educational level and the working status of the staff have been registered.Each member of staff completed a brief survey indicating their level of knowledge of sEMG, using a five-point Likert scale. Results: The sEMG protocol was carried out by a multidisciplinary team composed of Physical Therapists (PTs) and Biomedical Engineers (BEs). Indeed, the educational level andtheexpertiseofthemembersofstaffinfluencedthefulfillmentoftheimplementation of the study.ThePTsinvolved in the study did not receive any for maleducationonsEMG during their course of study. The low success rate (22.7%) of the protocol was caused by several factors which could be grouped in: patient-related barriers; cultural barriers; technical barriers; and administrative barriers. Conclusions: Since a series of barriers limited the use of sEMG in the clinical rehabilitative environment, concrete actions are needed for disseminating sEMG in rehabilitation services. The sEMG assessment should be included in health systems regulations and specific education should be part of the rehabilitation professionals’ curriculum. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT03395717

    Acceptance and potential impact of the ewall platform for health monitoring and promotion in persons with a chronic disease or age-related impairment

    Get PDF
    Pervasive health technologies can increase the effectiveness of personal health monitoring and training, but more user studies are necessary to understand the interest for these technologies, and how they should be designed and implemented. In the present study, we evaluated eWALL, a user-centered pervasive health technology consisting of a platform that monitors users’ physical and cognitive behavior, providing feedback and motivation via an easy-to-use, touch-based user interface. The eWALL was placed for one month in the home of 48 subjects with a chronic condition (chronic obstructive pulmonary disease—COPD or mild cognitive impairment—MCI) or with an age-related impairment. User acceptance, platform use, and potential clinical effects were evaluated using surveys, data logs, and clinical scales. Although some features of the platform need to be improved before reaching technical maturity and making a difference in patients’ lives, the real-life evaluation of eWALL has shown how some features may influence patients’ intention to use this promising technology. Furthermore, this study made it clear how the free use of different health apps is modulated by the real needs of the patient and by their usefulness in the context of the patient’s clinical status

    Effects of tiredness on visuo-spatial attention processes in elite karate athletes and non-athletes

    Get PDF
    "Attentional" adaptations are fundamental effects for sport performance. We tested the hypothesis that tiredness and muscular fatigue poorly affect visuo-spatial attentional processes in \ue9lite karate athletes. To this aim, 14 \ue9lite karate athletes and 11 non-athletes were involved in an isometric contraction exercise protocol up to muscular fatigue. Blood lactate and attention measurements were taken. Posner's test probed "endogenous" (i.e. internally planned allocation of spatial attention) and "reflexive" (i.e. brisk variation of endogenous spatial attention due to unexpected external stimuli) attention. Lactate and attentional measurements were performed before (Block 1, B1) and after the fatiguing exercise (B2) and at the end of a recovery period (B3). Compared to the non-athletes, the athletes showed a better performance in the fatigue protocol, confirmed by the higher absolute lactate values in B2. The correct responses in the "valid trials" probing "endogenous" attention were 92.4% (B1), 93.9% (B2), and 95.8% (B3) in the non-athletes, and 98.5%, 96.4%, 95.5% in the \ue9lite karate athletes. The correct responses in the "invalid trials" probing "reflexive" attention were 95.4%, 89.7%, 93.2% in the non-athletes, and 96.4%, 97.3%, 98.5% in the \ue9lite karate athletes. The percentage of correct responses in the "invalid" trials significantly decreased from B1 to B2 in the non-athletes but not in the \ue9lite karate athletes. In conclusion, tiredness and muscular fatigue do not affect "reflexive" attentional processes of \ue9lite karate athletes, which is crucial to contrast attacks coming from an unexpected spatial region

    Feasibility study into self-administered training at home using an arm and hand device with motivational gaming environment in chronic stroke

    Get PDF
    © 2015 Nijenhuis et al. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.BACKGROUND: Assistive and robotic training devices are increasingly used for rehabilitation of the hemiparetic arm after stroke, although applications for the wrist and hand are trailing behind. Furthermore, applying a training device in domestic settings may enable an increased training dose of functional arm and hand training. The objective of this study was to assess the feasibility and potential clinical changes associated with a technology-supported arm and hand training system at home for patients with chronic stroke. METHODS: A dynamic wrist and hand orthosis was combined with a remotely monitored user interface with motivational gaming environment for self-administered training at home. Twenty-four chronic stroke patients with impaired arm/hand function were recruited to use the training system at home for six weeks. Evaluation of feasibility involved training duration, usability and motivation. Clinical outcomes on arm/hand function, activity and participation were assessed before and after six weeks of training and at two-month follow-up. RESULTS: Mean System Usability Scale score was 69 % (SD 17 %), mean Intrinsic Motivation Inventory score was 5.2 (SD 0.9) points, and mean training duration per week was 105 (SD 66) minutes. Median Fugl-Meyer score improved from 37 (IQR 30) pre-training to 41 (IQR 32) post-training and was sustained at two-month follow-up (40 (IQR 32)). The Stroke Impact Scale improved from 56.3 (SD 13.2) pre-training to 60.0 (SD 13.9) post-training, with a trend at follow-up (59.8 (SD 15.2)). No significant improvements were found on the Action Research Arm Test and Motor Activity Log. CONCLUSIONS: Remotely monitored post-stroke training at home applying gaming exercises while physically supporting the wrist and hand showed to be feasible: participants were able and motivated to use the training system independently at home. Usability shows potential, although several usability issues need further attention. Upper extremity function and quality of life improved after training, although dexterity did not. These findings indicate that home-based arm and hand training with physical support from a dynamic orthosis is a feasible tool to enable self-administered practice at home. Such an approach enables practice without dependence on therapist availability, allowing an increase in training dose with respect to treatment in supervised settings. TRIAL REGISTRATION: This study has been registered at the Netherlands Trial Registry (NTR): NTR3669 .Peer reviewe

    Resting state EEG rhythms as network disease markers for drug discovery in Alzheimer's disease.

    No full text
    Alzheimer's disease (AD) induces a widespread patho-logical extracellular accumulation of beta-amyloid (Ab) peptides that affects cortical networks underpin- ning cognitive functions. This is related to abnormal functional and effective brain connectivity as revealed by graph markers of resting-state eyes-closed electro-encephalographic (EEG) rhythms. Here we revised EEG studies in mild cognitive impairment and AD subjects showing that these markers are promising network disease endpoints for basic research and AD drug discovery

    Kinematic parameters for tracking patient progress during upper limb robot-assisted rehabilitation: an observational study on subacute stroke subjects

    No full text
    Background. Upper limb robot-assisted therapy (RT) provides intensive, repetitive, and task-specific treatment, and its efficacy for stroke survivors is well established in literature. Biomechanical data from robotic devices has been widely employed for patient’s assessment, but rarely it has been analysed for tracking patient progress during RT. The goal of this retrospective study is to analyse built-in kinematic data registered by a planar end-effector robot for assessing the time course of motor recovery and patient’s workspace exploration skills. A comparison of subjects having mild and severe motor impairment has been also conducted. For that purpose, kinematic data recorded by a planar end-effector robot have been processed for investigating how motor performance in executing point-to-point trajectories with different directions changes during RT. Methods. Observational retrospective study of 68 subacute stroke patients who conducted 20 daily sessions of upper limb RT with the InMotion 2.0 (Bionik Laboratories, USA): planar point-to-point reaching tasks with an “assist as needed” strategy. The following kinematic parameters (KPs) were computed for each subject and for each point-to-point trajectory executed during RT: movement accuracy, movement speed, number of peak speed, and task completion time. The Wilcoxon signed-rank tests were used with clinical outcomes. the Friedman test and post hoc Conover’s test (Bonferroni’s correction) were applied to KPs. A secondary data analysis has been conducted by comparing patients having different severities of motor impairment. The level of significance was set at p value < 0.05. Results. At the RT onset, the movements were less accurate and smoothed, and showed higher times of execution than those executed at the end of treatment. The analysis of the time course of KPs highlighted that RT seems to improve the motor function mainly in the first sessions of treatment: most KPs show significant intersession differences during the first 5/10 sessions. Afterwards, no further significant variations occurred. The ability to perform movements away from the body and from the hemiparetic side remains more challenging. The results obtained from the data stratification show significant differences between subjects with mild and severe motor impairment. Conclusion. Significant improvements in motor performance were registered during the time course of upper limb RT in subacute stroke patients. The outcomes depend on movement direction and motor impairment and pave the way to optimize healthcare resources and to design patient-tailored rehabilitative protocols
    • …
    corecore