2,164 research outputs found

    Qualitative study in Loop Quantum Cosmology

    Get PDF
    This work contains a detailed qualitative analysis, in General Relativity and in Loop Quantum Cosmology, of the dynamics in the associated phase space of a scalar field minimally coupled with gravity, whose potential mimics the dynamics of a perfect fluid with a linear Equation of State (EoS). Dealing with the orbits (solutions) of the system, we will see that there are analytic ones, which lead to the same dynamics as the perfect fluid, and our goal is to check their stability, depending on the value of the EoS parameter, i.e., to show whether the other orbits converge or diverge to these analytic solutions at early and late times.Comment: 12 pages, 7 figures. Version accepted for publication in CQ

    Radio Astronomy

    Get PDF
    Contains reports on seven research projects.M. I. T. Sloan Fund for Basic ResearchNational Science Foundation (Grant GP-8415)Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E)National Aeronautics and Space Administration (Grant NGL 22-009-016

    Heavy Baryon Specroscopy from the Lattice

    Get PDF
    The results of an exploratory lattice study of heavy baryon spectroscopy are presented. We have computed the full spectrum of the eight baryons containing a single heavy quark, on a 243×4824^3\times 48 lattice at β=6.2\beta=6.2, using an O(a)O(a)-improved fermion action. We discuss the lattice baryon operators and give a method for isolating the contributions of the spin doublets (Σ,Σ)(\Sigma,\Sigma^*), (Ξ,Ξ)(\Xi',\Xi^*) and (Ω,Ω)(\Omega,\Omega^*) to the correlation function of the relevant operator. We compare our results with the available experimental data and find good agreement in both the charm and the beauty sectors, despite the long extrapolation in the heavy quark mass needed in the latter case. We also predict the masses of several undiscovered baryons. We compute the \Lambda-\mbox{pseudoscalar meson} and ΣΛ\Sigma-\Lambda mass splittings. Our results, which have errors in the range 1030% 10-30\%, are in good agreement with the experimental numbers. For the ΣΣ\Sigma^*-\Sigma mass splitting, we find results considerably smaller than the experimental values for both the charm and the beauty baryons, although in the latter case the experimental results are still preliminary. This is also the case for the lattice results for the hyperfine splitting for the heavy mesons.Comment: 31 pages LaTex, with postscript figures include

    Uptake of oxLDL and IL-10 production by macrophages requires PAFR and CD36 recruitment into the same lipid rafts

    Get PDF
    Macrophage interaction with oxidized low-density lipoprotein (oxLDL) leads to its differentiation into foam cells and cytokine production, contributing to atherosclerosis development. In a previous study, we showed that CD36 and the receptor for platelet-activating factor (PAFR) are required for oxLDL to activate gene transcription for cytokines and CD36. Here, we investigated the localization and physical interaction of CD36 and PAFR in macrophages stimulated with oxLDL. We found that blocking CD36 or PAFR decreases oxLDL uptake and IL-10 production. OxLDL induces IL-10 mRNA expression only in HEK293T expressing both receptors (PAFR and CD36). OxLDL does not induce IL-12 production. The lipid rafts disruption by treatment with βCD reduces the oxLDL uptake and IL-10 production. OxLDL induces co-immunoprecipitation of PAFR and CD36 with the constitutive raft protein flotillin-1, and colocalization with the lipid raft-marker GM1-ganglioside. Finally, we found colocalization of PAFR and CD36 in macrophages from human atherosclerotic plaques. Our results show that oxLDL induces the recruitment of PAFR and CD36 into the same lipid rafts, which is important for oxLDL uptake and IL-10 production. This study provided new insights into how oxLDL interact with macrophages and contributing to atherosclerosis development

    Standard Model Matrix Elements for Neutral B-Meson Mixing and Associated Decay Constants

    Full text link
    We present results of quenched lattice calculations of the matrix elements relevant for B_d-\bar B_d and B_s-\bar B_s mixing in the Standard Model. Results for the corresponding SU(3)-breaking ratios, which can be used to constrain or determine |V_{td}|, are also given. The calculations are performed at two values of the lattice spacing, corresponding to \beta = 6.0 and \beta = 6.2, with quarks described by a mean-field-improved Sheikholeslami-Wohlert action. As a by-product, we obtain the leptonic decay constants of B and D mesons. We also present matrix elements relevant for D^0-\bar D^0 mixing. Our results are summarized in the Introduction.Comment: 27 pages (RevTeX), 26 figures, version published in Phys. Rev. D: improved estimate of the systematic error associated with the uncertainty on the strange quark mass and other small improvements to analysis (results change only slightly); correction of typos and minor changes to text; RevTeX formattin

    Heavy-light Mesons and Baryons with b quarks

    Get PDF
    We present lattice results for the spectrum of mesons containing one heavy quark and of baryons containing one or two heavy quarks. The calculation is done in the quenched approximation using the NRQCD formalism for the heavy quark. We analyze the dependence of the mass splittings on both the heavy and the light quark masses. Meson P-state fine structure and baryon hyperfine splittings are resolved for the first time. We fix the b quark mass using both M_B and M_{\Lambda_b}, and our best estimate is m_b^\MSbar(m_b^\MSbar) = 4.35(10)({}^{-3}_{+2})(10) GeV. The spectrum, obtained by interpolation to m_b, is compared with the experimental data.Comment: 34 pages, LaTeX, 13 postscript figures, version as publish in Phys. Rev.

    Effects of Irradiation Temperature on the Response of CeO2, ThO2, and UO2 to Highly Ionizing Radiation

    Full text link
    Microcrystalline CeO2, ThO2, and UO2 were irradiated with 198 MeV 132Xe ions to the same fluence at temperatures ranging from 25 °C to 700 °C then characterized by synchrotron X-ray diffraction and X-ray absorption spectroscopy. All samples retain crystallinity and their nominal fluorite-type phase at a fluence of 1.5 × 1013 ions/cm2. Both CeO2 and ThO2 display defect-induced unit cell expansion after irradiation at room temperature (∼0.15% and ∼0.10%, respectively), yet as irradiation temperature increases, the maximum swelling produced decreases to ∼0.02%. Alternatively, UO2 shows an initial contraction in unit cell parameter (approximately −0.05%) for room temperature irradiation, most likely related to irradiation-enhanced annealing or irradiation-induced oxidation. At higher temperatures (above 200 °C) UO2 begins to swell, surpassing its unit cell parameter prior to irradiation (∼0.05%), an effect which could be attributed to minor reduction in uranium oxidation state in vacuum. However, while CeO2 irradiated at room temperature undergoes partial reduction, both UO2 and ThO2 exhibit no measurable change in cation oxidation state as evidenced by X-ray absorption spectroscopy. All samples display a decrease in irradiation-induced heterogeneous microstrain as a function of increasing irradiation temperature. © 2019 Elsevier B.V.This work was supported by the Energy Frontier Research Center Materials Science of Actinides funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (DE-SC0001089). Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source, Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA under award No. DE-NA0001974 and DOE-BES under award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. APS is supported by DOE-BES, under contract No. DE-AC02-06CH11357. W.F.C. and R.I.P. gratefully acknowledge support from the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA) through the Capital/DOE Alliance Center (DE-NA0003858). HPCAT beamtime was granted by the Capital/DOE Alliance Center
    corecore