1,068 research outputs found

    Decay constants, semi-leptonic and non-leptonic decays in a Bethe-Salpeter Model

    Full text link
    We evaluate the decay constants for the B and DD mesons and the form factors for the semileptonic decays of the B meson to DD and DD^* mesons in a Bethe-Salpeter model. From data we extract Vcb=0.039±0.002V_{cb}=0.039 \pm 0.002 from BˉDlνˉ{\bar B} \to D^* l {\bar{\nu}} and Vcb=0.037±0.004V_{cb}=0.037 \pm 0.004 from BˉDlνˉ{\bar B} \to D l {\bar{\nu}} decays. The form factors are then used to obtain non-leptonic decay partial widths for BDπ(K) B\to D \pi (K) and BDD(Ds)B \to D D (D_s) in the factorization approximation.Comment: 15 Pages, 3 Postscript figures (available also from [email protected]

    Virus Replication as a Phenotypic Version of Polynucleotide Evolution

    Full text link
    In this paper we revisit and adapt to viral evolution an approach based on the theory of branching process advanced by Demetrius, Schuster and Sigmund ("Polynucleotide evolution and branching processes", Bull. Math. Biol. 46 (1985) 239-262), in their study of polynucleotide evolution. By taking into account beneficial effects we obtain a non-trivial multivariate generalization of their single-type branching process model. Perturbative techniques allows us to obtain analytical asymptotic expressions for the main global parameters of the model which lead to the following rigorous results: (i) a new criterion for "no sure extinction", (ii) a generalization and proof, for this particular class of models, of the lethal mutagenesis criterion proposed by Bull, Sanju\'an and Wilke ("Theory of lethal mutagenesis for viruses", J. Virology 18 (2007) 2930-2939), (iii) a new proposal for the notion of relaxation time with a quantitative prescription for its evaluation, (iv) the quantitative description of the evolution of the expected values in in four distinct "stages": extinction threshold, lethal mutagenesis, stationary "equilibrium" and transient. Finally, based on these quantitative results we are able to draw some qualitative conclusions.Comment: 23 pages, 1 figure, 2 tables. arXiv admin note: substantial text overlap with arXiv:1110.336

    Gifted and talented education: The English policy highway at a crossroads?

    Get PDF
    Copyright © 2013 by Sage Publications. This is the author's accepted manuscript. The final published article is available from the link below.In 1999, the British government launched an education program for gifted and talented pupils as part of its Excellence in Cities initiative (EiC) that was initially designed to raise the educational achievement of very able pupils in state-maintained secondary schools in inner-city areas. Although some activities targeting gifted children had already been initiated by various voluntary organizations over several previous decades, this was the first time that the topic of improved provision for these pupils had been placed firmly within the national agenda. This article provides the background to the English gifted and talented policy “highway” and an overview of what was expected of schools. How practitioners responded to the policy, their beliefs and attitudes toward identifying gifted and talented pupils, and the opportunities and challenges that arose along the way to the current crossroads are explored. The need to empower teachers to feel more confident in classroom provisions for gifted and talented pupils is identified along with the potentially pivotal role of action research and “pupil voice” in the process of continued professional development and support

    Large scale variation in the rate of germ-line de novo mutation, base composition, divergence and diversity in humans

    Get PDF
    It has long been suspected that the rate of mutation varies across the human genome at a large scale based on the divergence between humans and other species. However, it is now possible to directly investigate this question using the large number of de novo mutations (DNMs) that have been discovered in humans through the sequencing of trios. We investi- gate a number of questions pertaining to the distribution of mutations using more than 130,000 DNMs from three large datasets. We demonstrate that the amount and pattern of variation differs between datasets at the 1MB and 100KB scales probably as a consequence of differences in sequencing technology and processing. In particular, datasets show differ- ent patterns of correlation to genomic variables such as replication time. Never-the-less there are many commonalities between datasets, which likely represent true patterns. We show that there is variation in the mutation rate at the 100KB, 1MB and 10MB scale that can- not be explained by variation at smaller scales, however the level of this variation is modest at large scales–at the 1MB scale we infer that ~90% of regions have a mutation rate within 50% of the mean. Different types of mutation show similar levels of variation and appear to vary in concert which suggests the pattern of mutation is relatively constant across the genome. We demonstrate that variation in the mutation rate does not generate large-scale variation in GC-content, and hence that mutation bias does not maintain the isochore struc- ture of the human genome. We find that genomic features explain less than 40% of the explainable variance in the rate of DNM. As expected the rate of divergence between spe- cies is correlated to the rate of DNM. However, the correlations are weaker than expected if all the variation in divergence was due to variation in the mutation rate. We provide evidence that this is due the effect of biased gene conversion on the probability that a mutation will become fixed. In contrast to divergence, we find that most of the variation in diversity can be explained by variation in the mutation rate. Finally, we show that the correlation between divergence and DNM density declines as increasingly divergent species are considered

    Genome landscapes and bacteriophage codon usage

    Get PDF
    Across all kingdoms of biological life, protein-coding genes exhibit unequal usage of synonmous codons. Although alternative theories abound, translational selection has been accepted as an important mechanism that shapes the patterns of codon usage in prokaryotes and simple eukaryotes. Here we analyze patterns of codon usage across 74 diverse bacteriophages that infect E. coli, P. aeruginosa and L. lactis as their primary host. We introduce the concept of a `genome landscape,' which helps reveal non-trivial, long-range patterns in codon usage across a genome. We develop a series of randomization tests that allow us to interrogate the significance of one aspect of codon usage, such a GC content, while controlling for another aspect, such as adaptation to host-preferred codons. We find that 33 phage genomes exhibit highly non-random patterns in their GC3-content, use of host-preferred codons, or both. We show that the head and tail proteins of these phages exhibit significant bias towards host-preferred codons, relative to the non-structural phage proteins. Our results support the hypothesis of translational selection on viral genes for host-preferred codons, over a broad range of bacteriophages.Comment: 9 Color Figures, 5 Tables, 53 Reference
    corecore