594 research outputs found

    Holographic Oddballs

    Get PDF
    The spectrum of the glueball with JPC=0−−J^{PC}=0^{--} is computed using different bottom-up holographic models of QCD. The results indicate a lowest-lying state lighter than in the determination by other methods, with mass m≃2.8m \simeq 2.8 GeV. The in-medium properties of this gluonium are investigated, and stability against thermal and density effects is compared to other hadronic systems. Production and decay modes are identified, useful for searching the JPC=0−−J^{PC}=0^{--} glueball.Comment: 16 pages, 9 figures, 3 table

    On thermalization of a boost-invariant non Abelian plasma

    Full text link
    Using a holographic method, we further investigate the relaxation towards the hydrodynamic regime of a boost-invariant non-Abelian plasma taken out-of-equilibrium. In the dual description, the system is driven out-of-equilibrium by boundary sourcing, a deformation of the boundary metric, as proposed by Chesler and Yaffe. The effects of several deformation profiles on the bulk geometry are investigated by the analysis of the corresponding solutions of the Einstein equations. The time of restoration of the hydrodynamic regime is investigated: setting the effective temperature of the system at the end of the boundary quenching to Teff(τ∗)=500T_{eff}(\tau^*)=500 MeV, the hydrodynamic regime is reached after a lapse of time of O{\cal O}(1 fm/c).Comment: 24 pages, 11 figures. Improved numerical analysis, one more appendix, two new figures. To appear in JHE

    Quarkonium dissociation in a far-from-equilibrium holographic setup

    Full text link
    The real-time dissociation of the heavy quarkonium in a strongly coupled boost-invariant non-Abelian plasma relaxing towards equilibrium is analyzed in a holographic framework. The effects driving the plasma out of equilibrium are described by boundary quenching, impulsive variations of the boundary metric. Quarkonium is represented by a classical string with endpoints kept close to the boundary. The evolution of the string profile is computed in the time-dependent geometry, and the dissociation time is evaluated for different configurations with respect to the direction of the plasma expansion. Dissociation occurs fastly for the quarkonium placed in the transverse plane.Comment: 14 pages, 8 figures. References added. Matches the published versio

    Application of a new processing method to post-LDL-apheresis data.

    Get PDF
    Our aim was to elaborate a method to optimise treatment intervals for the individual low-density lipoprotein (LDL)-apheresis treated patients. After each treatment, plasma LDL concentrations show a time-related increase with a decreasing speed until a maximum level.We searched to interpret the post- LDL-apheresis experimental data trend as the physical process that produces the observed curve, so that the fitting presupposed theoretical function is a direct consequence of the physic process, because to establish the better time. Applying the proposed fitting method to a succession of 15 samples obtained from the mean of six plasmapheresis executed on five different subjects, small estimate standard error (5 mg/dl) and relative error (1.7%) with a dispersion evidently related to the experimental error were observed. Obviously, applying the same method to a single case, the dispersion is more marked (relative error ,5%), with a SE of 10–13 mg/dl, even though the aspect of a casual phenomenon is conserved. Our physical interpretation appears to be a practical model to predict the LDL-rebound kinetic of the single patient

    Quarkonium dissociation in strongly coupled far-from-equilibrium matter: holographic description

    Get PDF
    Abstract The heavy quarkonium real-time dissociation in a strongly coupled non-Abelian matter relaxing to equilibrium is described in a holographic approach. Boundary sourcing, impulsive distortions of the boundary metric, are used to mimic effects driving the matter far-from-equilibrium. Quarkonium is represented by a string with endpoints kept close to the boundary, and its evolution in the time-dependent geometry is studied

    Continuous and discontinuous phase transitions and partial synchronization in stochastic three-state oscillators

    Full text link
    We investigate both continuous (second-order) and discontinuous (first-order) transitions to macroscopic synchronization within a single class of discrete, stochastic (globally) phase-coupled oscillators. We provide analytical and numerical evidence that the continuity of the transition depends on the coupling coefficients and, in some nonuniform populations, on the degree of quenched disorder. Hence, in a relatively simple setting this class of models exhibits the qualitative behaviors characteristic of a variety of considerably more complicated models. In addition, we study the microscopic basis of synchronization above threshold and detail the counterintuitive subtleties relating measurements of time averaged frequencies and mean field oscillations. Most notably, we observe a state of suprathreshold partial synchronization in which time-averaged frequency measurements from individual oscillators do not correspond to the frequency of macroscopic oscillations observed in the population

    Heavy quarkonium moving in a quark-gluon plasma

    Get PDF
    By means of effective field theory techniques, we study the modifications of some properties of weakly coupled heavy quarkonium states propagating through a quark-gluon plasma at temperatures much smaller than the heavy quark mass, mQ. Two different cases are considered, corresponding to two different hierarchies between the typical size of the bound state, r, the binding energy, E, the temperature, T, and the screening mass, mD. The first case corresponds to the hierarchy mQ≫1/r≫T≫E≫mD, relevant for moderate temperatures, and the second one to the hierarchy mQ≫T≫1/r, mD≫E, relevant for studying the dissociation mechanism. In the first case we determine the perturbative correction to the binding energy and to the decay width of states with arbitrary angular momentum, finding that the width is a decreasing function of the velocity. A different behavior characterizes the second kinematical case, where the width of s-wave states becomes a nonmonotonic function of the velocity, increasing at moderate velocities and decreasing in the ultrarelativistic limit. We obtain a simple analytical expression of the decay width for T≫1/r≫mD≫E at moderate velocities, and we derive the s-wave spectral function for the more general case T≫1/r, mD≫E. A brief discussion of the possible experimental signatures as well as a comparison with the relevant lattice data are also presented
    • 

    corecore