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Abstract

A technique for deriving a low-order model of a large, deformable space
vehicle, with a configuration resembling that of the International Space Sta-
tion, is proposed. The modeling approach is based on a hybrid Newtonian-
Lagrangian approach, where a generalized Euler equation is written for ro-
tational degrees of freedom, whereas the dynamics of states associated to
deformation by means of a Galërkin approach is derived by means of a La-
grangian formulation. The assumed modes method is adopted, where modal
characteristics of the main deformable structure are estimated on the basis
of its real characteristics, estimated by means a finite element model of the
actual truss configuration. A cluster of control moment gyroscopes is consid-
ered as the actuator for attitude control. Open- and closed-loop maneuvers
are considered, in order to highlight coupling between rotational and defor-
mation degrees of freedom. The modeling tools allows for a quick search of
gains which minimizes structural excitations during large angle slews.

Keywords: Flexible space structure, Attitude control, Low-order models.

1. Introduction

The objective of the paper is to derive attitude control laws for large
flexible space structures, evaluating the resulting excitation of deformation
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Degrees of Freedom (DoFs) during and at the end of large angle reorientation
maneuvers. The attitude control of a flexible space system has been investi-
gated in many research papers and reports, such as [1, 2, 3]. As an example,
Malla and Lin established an orbit-attitude-structure coupled model, based
on an absolute nodal coordinate formulation, which is accurate in modeling
rigid-flexible coupled effects and large-deformation cases [4].

The motivations for this research are mainly two, both related to the
extreme pointing precision required by some scientific payloads. First of all,
when these payloads are installed on board of a spacecraft, active or passive
supports with vibration isolation capabilities are often required, for reaching
the pointing precision specified by mission requirements. Hence, a reasonably
accurate knowledge of vibrations induced by attitude maneuvers is crucial
in designing the payload support system [5]. Quite obviously, vibration iso-
lation/suppression systems (as in [6]and [7]) represent a penalty in terms
of additional cost and weight, and, for active ones, complexity (in this lat-
ter respect harming overall system reliability). As a consequence, a second
objective for the research becomes relevant, namely the search for attitude
control laws which minimize structure excitation [8]. By accurately selecting
control laws and gains, it may be possible to avoid the need of active vibra-
tion control, if residual vibrations are brought below an acceptable threshold
[9]. The work aims at providing the community with a physically consis-
tent approach for the derivation of low-order models [10] of large deformable
space structures, demonstrating the viability of the method in the framework
of control law synthesis for large angle reorientation maneuvers.

The reduced order model presented in the paper is indeed useful for di-
dactic purposes, highlighting coupling between all three rotational DoFs and
deformation variables in a simplified, yet realistic, scenario. Nonetheless,
the proposed approach is significantly more complex and complete than the
derivation of single-axis models, like that presented in the book by Junkins
and Kim [11]. The low-order model developed can thus also be used for the
synthesis of control laws which minimize excitation of deformation DoFs dur-
ing fast, large angle slews at a very early stage in the design process. In this
framework, the availability of a simplified model requires a small number of
relevant parameters, hence it allows for such an activity prior to the exact
definition of the actual structural properties. Moreover, model parameters
representative of global characteristics of the structure can be easily updated
in the presence of more detailed information on the actual properties of the
flexible spacecraft. To the best of the authors’ knowledge, such a model is
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not yet available in the technical literature.
Attitude dynamics and control of large space structures [11, 12] pose

several challenges, which make the problem far from trivial [13]. On the
modeling side, in the presence of large attitude variations coupled with local
deformations, a hybrid system of nonlinear ordinary differential equations
(governing rotational dynamics) and partial differential equations (ruling de-
formation degrees of freedom) is derived in [14] and [15]. Moreover, the
determination of deformation modes for large structures made of elements of
different type (trusses, panels, pressurized elements, joints, etc.), may result
into high order models, when a classical Finite Element Method (FEM) is
adopted [16]. Such models are not suitable for control law synthesis.

On the other hand, control or large orbiting bodies poses additional chal-
lenges, especially in the presence of saturation phenomena, which limit the
maximum angular acceleration (because of bounds on available torque) and
angular rates (because of bounds on angular momentum stored in the cluster
of spin wheels). The use of control moment gyroscopes (CMGs) as attitude
effectors allows for performing zero-propellant attitude maneuvers [17, 18].
Unfortunately, in such a case, beside torque and angular momentum satura-
tion issues, the intrinsic nonlinearity of the problem, and, more importantly,
the presence of singular configurations for the CMG cluster [19] pose addi-
tional challenges to the control problem.

When a singular CMG cluster configuration is approached, gimbal control
rates may diverge to unfeasibly high values, and the control effectors loose
effectiveness, provided that in a singular configuration the system becomes
underactuated, apparent gyroscopic control torque being constrained on a
plane, perpendicular to the singular direction [19]. At the same time, de-
formations excited during the transient phases of the maneuver may induce
oscillations, which may persist after reorientation is completed, if structural
damping is low [11, 20].

Clearly, a simplified modeling approach may be extremely interesting, in
order to provide enough information on deformation state during the attitude
maneuver, while limiting overall system order, such that conventional control
design techniques remain available with simple architectures [21, 22, 23, 24].
With this objective, a minimum complexity dynamic model of a large orbiting
body, with size, mass distribution and configuration resembling that of the
International Space Station (ISS) is derived, as a relevant test case for the
envisaged technique. The model describes attitude dynamics of the vehicle,
accounting for rotational DoFs and structural deformation, while keeping
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model order low, by means of two strategies: (i) a simplified configuration
is derived, where some elements of the vehicle are considered as rigid bodies
attached to the deformable structure; (ii) deformation state is determined
only for relevant variables by means of the assumed modes method [11],
truncating the series expansion to a minimum number of modes.

As a preliminary step, a reduced order model of the truss is required,
which reproduces (with acceptable accuracy) the dynamic behavior of the
actual truss, which properties are determined by means of a Finite Element
(FE) model. In this respect, a few studies are available, where FE methods
are adopted for modeling and simulating the response of the entire ISS. As an
example, the possibility of generating simple FE models of the first modules
of ISS was studied in [25]. Alyaa [26] discusses the modal analysis for the
Zvesda Mission of the Space Station using an alternative method, based
on bond graph technology. In the present study, a truss which reproduces
the geometry of that built for the ISS is accurately modeled by means of a
FE method, in order to derive torsional and flexural frequencies and modal
shapes. This study is then used for generating an equivalent Euler-Bernouilli
beam, with the equivalent modal properties.

The procedure described in [11] for modeling single axis rotations of a
cylinder with flexible appendages, based on the assumed modes method,
is thus extended here to the case of a fully flexible large space structure
with 3 rotational degrees of freedom, coupled with bending and torsional
deformations. A hybrid Newtonian-Lagrangian approach is adopted [27]: a
generalized Euler equation is written for describing the evolution of angular
rate components of the deformable body, whereas the dynamics of deforma-
tion variables is derived by means of a Lagrangian formulation, under the
assumption of small deformations.

The following section will provide the definition of structural models for
the major elements of the ISS-like vehicle. An equivalent, low-order model for
the main deformable truss of the vehicle is here presented. The derivation of a
dynamic model of the whole vehicle, featuring relevant deformable elements
and rigid appendages is provided in Section 3, where the attitude control
problem is also formulated. Numerical simulations are discussed in Section
4 in order to analyze performance of closed-loop control laws for large angle
slew maneuvers. The effect of control law gains on the resulting excitation
of deformation DoFs is also studied. A section of concluding remarks ends
the paper.
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2. Modeling of a Large Space Structure

2.1. Geometry

Figure 1.a provides a pictorial representation of the International Space
Station, where all the elements are clearly visible: a long truss, which repre-
sents the major structural element, a set of 8 pairs of orientable solar panels,
placed at the edge of the truss, a group of pressurized modules, attached
approximately in the centre of the truss, other minor elements, such as pay-
loads, radiators, etc.

a)

b) c)

Figure 1: Sketch of the ISS configuration (a); equivalent vehicle in undeformed (b)
and deformed (c) conditions.

A simplified scheme for the configuration is here adopted (Figure 1.b),
where the only deformable element is the truss, whereas pairs of solar panels
and the cluster of pressurized modules are treated as rigid bodies of known
inertia, attached to the truss. Other elements of the original ISS configuration
are not included in the model, as long as the objective of the paper is focused
on deriving a reasonable test-case for the modeling technique, rather than
exactly reproducing the behavior of the actual vehicle.

A set of pseudo-body axis FB ≡ {O;xB, yB, zB} is selected [28, 27], which
is centered in the centre of mass O of the undeformed configuration, with the
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xB axis parallel to the truss axis, the zB axis in the symmetry plane, normal to
the plane identified by the solar panels, and the yB axis completing a right-
handed triad. Only three deformation degrees of freedom are considered
for the truss, namely flexural deformation in the y and z direction, ξy and
ξz, and torsion around the truss axis xT , parallel to xB in the undeformed
configuration (Figure 1.c).

2.2. FE model of the Truss

A numerical FE model is developed to simulate the structural behav-
ior of the ISS-like truss, in order to numerically obtain the first natural
frequencies and relative modal shapes. The commercial software MSC NAS-
TRAN/PATRAN R2019 is used [29].

xB

yB

zB

Figure 2: Vehicle FE model.

For sake of clarity, the eight solar panels (magenta rectangles in Fig-
ure 2) and the pressurized modules (green cylinders) are drawn, attached at
different stations along the flexible truss. The reference frame for structural
analysis is centered as indicated in Figure 1.b. The truss structure is mod-
eled by means of CBAR elements, a straight one-dimensional element that
connects two grid points, each one with six degrees of freedom. The main
features of the CBAR element are the following: (i) this element supports
tension and compression, torsion, bending and shear in two perpendicular
planes, (ii) the elastic axis and the shear center coincide, (iii) the effect of
out-of-plane cross-sectional warping is neglected.
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To the best of authors’ knowledge, no work is available to the scientific
community which analyses in detail the ISS structural behavior. For this
reason, the properties of the CBAR elements used in the model (i.e. mate-
rials, areas and moments of inertia of each beam element) were empirically
derived, based on a few technical data available in the public literature and
reasonable assumptions [30, 31, 32].

The FE model thus developed is used to perform modal analyses (SOL103)
in order to obtain the first natural frequencies and the first mode shapes, in
terms of flexural and torsional degrees of freedom.

2.3. Transport and deformation variables: kinematics

As proposed in [14] and [28], motion variables are divided into transport
and deformation degrees of freedom, where the former represent global dis-
placement of the whole vehicle and depend on time only, whereas the latter
describe local deformation of the vehicle structure, thus depending on time
and position of the mass element along the structure.

In the present case, transport variables are associated to rotational de-
grees of freedom. The attitude of FB with respect to an inertially fixed
reference frame FI can be described in terms of quaternions Q = (qT , q̄)T ,
where the vector and scalar parts of the quaternions defined as

q = â sin(α/2) ; q̄ = cos(α/2)

with â and α being the unit vector parallel to Euler eigenaxis and Euler
rotation angle, respectively, associated to the rotation that takes FB onto FI
[33].

The evolution of quaternions is ruled by

q̇ =
1

2
(q̄ω − ω × q)

˙̄q = −1

2
ωTq

where ω are angular velocity components of FB with respect to FI .
In order to derive a finite order system of ordinary differential equations,

deformation variables (two flexural DoFs in the xy and xz planes) and a
torsional DoF (around xT ) are described using a Galërkin method. Torsion
angle ϑ(x, t) and the flexural displacements ξz(x, t), ξy(x, t) in the xz and xy

7



planes, are written as:

ϑ(x, t) =
Nt∑
i=1

ψi(x) · ζi(t)

ξz(x, t) =

Nf∑
i=1

φi(x) · ηz,i(t)

ξy(x, t) =

Nf∑
i=1

φi(x) · ηy,i(t)

where Nt and Nf are the numbers of relevant assumed modes considered in
the analysis, for torsional and flexural DoF’s, respectively, ψi(x) and φi(x) are
the torsional and flexural assumed modes (shape functions) considered, which
depend on the position x of the element along the truss axis xT , and ζi(t),
ηz,i(t), and ηy,i(t) are time-dependent amplitude of the i–th assumed mode in
the discretisation. Deformation rates ϑ̇, ξ̇z, and ξ̇y are clearly obtained from
the same expansion, where the amplitude of the assumed modes is multiplied
by ζ̇i, η̇z,i, and η̇y,i, respectively.

As a consequence, the state vector of the whole system can be partitioned
as

x = (ωT , ẋTD,Q
T ,xTD)T ∈ RN

where the vector xD = (ζ1, ζ2, . . . , ζNt ; ηz,1, ηz,2, . . . , ηz,Nf
; ηy,1, ηy,2, . . . , ηy,Nf

)T

collects deformation states. The order of the system, N , that is, the total
number of state variables used for describing the coupled rotational and de-
formation dynamics of the vehicle, is given by N = 7 + 2Nt + 4Nf .

In the following sections, when necessary for the sake of conciseness, vari-
able will be also grouped into position variables, namely P = (QT ,xTD)T ,
and velocity variables, V = (ωT , ẋTD)T . Also note that a non-minimal atti-
tude representation is being used, in order to avoid issues with singular atti-
tudes, when Euler angles (such as roll, pitch, and yaw angles) are adopted.
Nonetheless, for the sake of clarity, simulation results will be shown in terms
of quaternions.

2.4. Equivalent Low-Order Model of the Truss

The most important ingredient of the reduced order model, which allows
for representing the main dynamic features of the whole vehicle on the basis
of a minimum set of relevant information on structural configuration, is the
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definition of structural properties of the deformable element(s). In order to
identify these properties, the main truss structure is modeled by means of an
Euler-Bernoulli unconstrained beam with constant, thin-walled and hollow
section[34].

The aim is to identify the properties of this simplified, constant section
beam model, which reproduces with adequate accuracy, the response in the
frequency domain of the FE model of the ISS-like truss. Lumped masses and
moments of inertia, associated to solar panels and pressurized modules, are
than added at different stations along the deformable structure (Figure 3),
thus providing a configuration which resembles, at a mass distribution level,
that of the actual vehicle.

xB

yB

zBS.P.

S.P.

S.P.
S.P.

P.M.

Torsional
Deformations

Flexural
Deformations

Figure 3: Low-Order Model of the ISS.

The dynamics of torsional angle and flexural displacements of a slender
beam with constant section are described by the following equations [35]:

GIt · ϑii(x, t) − J ′x · ϑ̈(x, t) = 0

EIyy · ξivz (x, t) + m′ · ξ̈z(x, t) = 0

EIzz · ξivy (x, t) + m′ · ξ̈y(x, t) = 0

where (i) G and E are shear and flexural moduli, respectively; (ii) It, Iyy and
Izz are the torsional and the second moments of inertia of the section; and
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(iii) J ′x and m′ are the rotational inertia and mass densities (per unit length)
of the truss, respectively, both assumed constant.

By using the Galërkin discretization and the Euler-Bernoulli mode func-
tions (with free-free boundary conditions) as assumed mode shapes, it is
possible to evaluate the ith torsional (around x axis) and flexural (in xz and
xy planes) natural frequencies

fϑi =
ki
2π

√
GIt
ρIp

; f
xz/xy
i =

β2
i

2π

√
EIyy/zz
m/L

where (i) ki and βi are the roots of the characteristic nonlinear equations,
depending on boundary conditions; (ii) ρ and m are the material density and
the total mass of the truss; and (iii) Ip and L are the polar inertia of the
constant section and the truss length, respectively.

Quite obviously, different values of beam section features (It/Ip, Iyy and
Izz) are obtained, for each considered modal frequency. The attention is
thus focused on the first two modes, which are assumed as the most relevant
ones for the considered coupling problem between deformation and attitude
maneuvers (similarly to what was done in [27] and [36] for aeronautical appli-
cations of a similar modeling approach). A set of section parameters is thus
determined, which minimizes a weighted combinations of the errors between
for the first two torsional and flexural natural frequencies derived from the
FEM analysis and the low-order model. The validity of this approach will
be assessed in Section 4.

3. Reduced-Order Dynamics of a Large Space Structure

3.1. Transport and deformation variables: dynamics

A mixed Newtonian-Lagrangian approach [27] is applied to describe the
dynamics of the system using generalized Euler equations for the angular
velocities (transport variables) and Lagrange equations of motion for gener-
alized coordinates associated to deformation variables (flexural and torsional
variables). Details on the derivation of the full set of equations of motion can
be found in [37]. The next two subsections introduce the relevant equations
in compact vector form. The definition of vector and matrix quantities is
reported in the Appendix.
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3.2. Generalized Euler Equation for Attitude Dynamics

When all vector quantities are expressed in the pseudo-body axis reference
frame, FB, generalized Euler equation achieves the form:

dh

dt
+ ω × h+ S× a0 = M (1)

where h is the angular momentum, S = mtotrOG is the static moment of the
body with respect to the origin O of FB, a0 is the acceleration of O, and
M is the total external torque acting on the body. Note that for a purely
rotational dynamics, the acceleration of the centre of mass G is zero and

a0 = −
(
d2rOG
dt2

)
I

evaluated in an inertial frame. For small deformations, the position of G
with respect to O can be expressed as rOG = ΛxD.

Letting J be the moment of inertia tensor, the angular momentum can
be expressed as:

h = Jω︸︷︷︸
rotation term

+ hrel︸︷︷︸
deformation term

+ HB︸︷︷︸
control term

(2)

The rotation term is related to the angular rate of the whole body, where
the inertia tensor, J = J0 + ∆J , is equal to the sum of a nominal value,
J0, for the undeformed configuration, plus an increment ∆J(xD), due to
structure deformation state. The deformation term represents the contribu-
tion of deformation rates to angular momentum. For small deformations, it
can be written as hrel = ΓẋD. Finally, the control term accounts for the
angular momentum of Control Moment Gyroscopes (CMG) used to control
the spacecraft. This latter term depends on the orientation of the gimbals,
as explained in detail in subsection 3.4.

Expanding and rewriting, the generalized Euler equations can be ex-
pressed in the form

[Γ + ∆Λ] ẍD + [J + ∆Jrcm] ω̇ = fE(V,P) (3)

where ∆ΛẍD + ∆Jrcmω̇ accounts for the terms of S × a0 which depend on
ẍD and ω̇, whereas fE sums up all the contribution which depend on angular
rate, deformation and deformation rates, and control terms. For the sake of
clarity, all matrices are explicitly defined in the Appendix.
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3.3. Lagrange Equations for Dynamics of Deformation variables

Starting from the expressions of kinetic and potential energy of the whole
system, T and U , respectively, Lagrange equations of motion for deformation
variables collected in the vector xD are

d

dt

∂T

∂ẋi
− ∂T

∂xi
+
∂U

∂xi
= Qi (4)

The kinetic energy T , of the system is the sum of kinetic energy of each
group of component,

T = Ttr + Tsp + Tpm

namely truss (subscript tr), solar panels (sp), and pressurised modules (pm),
whereas potential energy consists only of one term,

U = Utr (5)

that is, elastic energy related to truss deformation (tr), assuming that, in
the absence of external forces, other than gravity, the centre of mass of the
system follows its nominal orbit.

3.3.1. Truss

In the simplified scheme, the truss structure is modelled as a constant
section slender beam, with constant material and elastic properties. The
kinetic energy of a beam element is the sum of a translational and a rotational
term,

dTtr =
1

2
m′ V 2

tr dxtr +
1

2
ωtP J′ωP dxtr (6)

where m′ = mtr/L is mass per unit length, J ′xx, J
′
yy and J ′zz are beam section

mass moments of inertia per unit length and ωP equal to body plus deforma-
tion angular speeds. Integrating over the length L of the truss, the kinetic
energy is the sum of a term associated to beam elements velocity, TV , and a
term associated to beam element angular speed, Tω.

Considering torsional and flexural variables associated to the Galërkin
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expansion, one has that

∂TV
∂ζi

= 0 ;
d

dt

∂TV

∂ζ̇i
= 0

∂TV
∂ηz,i

= see [37] ;
d

dt

∂TV
∂η̇z,i

= see [37]

∂TV
∂ηy,i

= see [37] ;
d

dt

∂TV
∂η̇y,i

= see [37]

∂Tω
∂ζi

= 0 ;
d

dt

∂Tω

∂ζ̇i
= see [37]

∂Tω
∂ηz,i

= 0 ;
d

dt

∂Tω
∂η̇z,i

= see [37]

∂Tω
∂ηy,i

= 0 ;
d

dt

∂Tω
∂η̇y,i

= see [37]

The elastic potential deformation energy of the truss can be written as

Utr =

∫ L/2

−L/2

1

2
GJt(θ

′)2dxtr +∫ L/2

−L/2

1

2
EIyy(ξ

′′
z )2dxtr +

∫ L/2

−L/2

1

2
EIzz(ξ

′′
y )2dxtr

where E and G are Young module and shear module, whereas Jt, Izz, and
Iyy are section moments of inertia.

3.3.2. Solar panels

Solar panels are rigidly attached to the truss. Four couples of solar panels
are considered. Each couple is considered as a rigid body of equivalent mass
and inertia, with the centre of mass on the longitudinal axis of the truss.
Note that panels can rotate around a pitch axis, perpendicular to the truss
axis.

No potential energy is associated to the panels and only kinetic energy
needs to be considered:

Tsp =
4∑

k=1

(
1

2
msp,kV

2
sp,k +

1

2
ωtP,k J̃ sp,k ωP,k

)
(7)

where J̃ sp is the inertia matrix of the panel pairs in the local reference frame
FL, parallel to FB, in the undeformed configuration, rigidly connected to the
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panel plates, with the origin in the attach point on the truss. In this way,
the vibrational behavior of the equivalent truss is significantly influenced by
these contributions in Eq. (7) (see Figure 3). At the same time, it is notewor-
thy to observe that solar panels have mass and inertia of at least two orders
of magnitude smaller than the truss to which they are connected. The as-
sumption of rigid solar panels is reasonable, provided that deformation of the
panels does not affect significantly the position of the center of mass of the
whole system nor its mass distribution in the deformed configuration, mak-
ing the effect of solar panels deformation on overall large structure dynamic
response negligible. On the other hand, such an assumption is useful in sim-
plifying the ISS model in terms of both numbers of generalized coordinates
(the description of solar panel deformation would require to add deformation
state for all panels) and system parameters (no information on actual stiff-
ness and mass distribution of the solar panes is required, just their inertial
parameters).

As for the truss, also for solar panels one has that:

∂Tsp
∂ζi

= 0 ;
d

dt

∂Tsp

∂ζ̇i
= see [37]

∂Tsp
∂ηz,i

= see [37] ;
d

dt

∂Tsp
∂η̇z,i

= see [37]

∂Tsp
∂ηy,i

= see [37] ;
d

dt

∂Tsp
∂η̇y,i

= see [37]

3.3.3. Pressurized modules

Pressurized modules are assumed as a rigid body, attached to the centre
of the truss in the undeformed configuration. Consequently, the position of
pressurized module assembly is fixed with respect to FB and its contribution
to total kinetic energy is associated with transport (rotational) degrees of
freedom only. This means that the partial derivatives of Tpm with respect
to deformation DoFs are all zero under the proposed choice of generalized
coordinates.

3.3.4. Generalized forces

On the right-hand side of Lagrange equations of motion, the term Qi

contains non-conservative, generalized forces, obtained from the virtual work
principle applied to flexible coordinates, xD,

δWi = Qi · δxi xi ∈ xD (8)
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Figure 4: Sketch of the CMG cluster.

where generalised forces are expressed as:

QF =


Qζ
F

Qηz
F

Q
ηy
F

 (9)

3.3.5. Equations for deformation DoF’s

In the end, collecting all the terms obtained previously, the resulting
system of Lagrange equations can be recast in the form of a set of linear
second-order ordinary differential equations,

M ẍD + C ẋV + K xD = QF + Qin (10)

where Qin groups all the inertial contributions from the left-hand side of
Lagrange equation. All the matrices are provided in the Appendix. Note
that the inertial coupling matrix C depends on the state vector x, then it
must be evaluated at every time step.

3.4. Control variables

A cluster of control moment gyroscopes is assumed as the effector for
3-axis attitude control [33]. A cluster of 4 CMG’s will be considered, in a
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pyramid mounting (Figure 4), with a mount angle β = 58 deg, which results
into a quasi-spherical angular momentum envelope. The angular momentum
H of the cluster depend on gimbal angles, δ = (δ1, δ2, δ3, δ4)

T ,

H = hw

 −cβsδ1 − cδ2 + cβsδ3 + cδ4
cδ1 − cβsδ2 − cδ3 + cβsδ4

sβsδ1 + sβsδ2 + sβsδ3 + sβsδ4


where s(·) = sin(·) and c(·) = cos(·), and hw is the angular momentum stored
in each cluster wheel, assumed constant (variable speed CMG’s will not be
considered in the present applications).

The apparent gyroscopic torque obtained from the CMG cluster is equal
to

mg = −Ḣ − ω ×H
where Ḣ = A(δ)δ̇, and A = ∂H/∂δ is a Jacobian matrix (see Appendix).

The control vector is thus given by gimbal rates, u = δ̇, which can be
determined in order to provide a desired control torque, derive from other
control approaches, such as the quaternion feedback control law [33]. A wide
literature on singularity avoidance [38] and singularity robust [39] techniques
is available, in order to allow the command law to either circumvent or cross
cluster singular configurations. A singularity avoidance gimbal rate command
low is here adopted (see Appendix).

3.5. System dynamic model
The models developed in the previous subsections can be assembled into

a system of first-order ordinary differential equations in the time domain,
Recalling that the vector V groups velocities variables (angular rates and
assumed mode rates), whereas P lists position variables (quaternion and as-
sumed modes amplitudes), an explicit space-state formulation can be derived,

V̇ = [M∗]−1f(V,P) (11)

Ṗ =

 −1
2
ωT q

1
2
(q0ω − ω × q)

ẋD

 = g(V,P) (12)

where the mass matrix M∗ is defined as

M∗ =

[
J + ∆Jrcm Γ + ∆Λ]

C M

]
The system formed by Eqs. (11) and (12) can be solved numerically, by means
of a step integration algorithm.
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Table 1: Beam section features and natural frequencies.

Beam Section [Hz] FEM L – O Err [%]

It/Ip=0.0217
fϑ1 2.12 2.26 6.60
fϑ2 7.29 6.67 -8.50

Iyy=0.0084 [m4]
fxz1 1.17 1.08 -7.69
fxz2 2.65 2.80 5.66

Izz=0.0035 [m4]
fxy1 0.73 0.68 -6.85
fxy2 1.87 1.76 -5.88

4. Results

4.1. Free dynamics of the (equivalent) truss

By following the approach proposed in Subsec. 2.4, a minimum for the
weighted combination of the errors on the estimate of the first two frequen-
cies for torsional and flexural modes derived from the FE model and the
equivalent Euler-Bernouilli beam is determined. The corresponding results
are provided in Table 1), where the features of the thin-walled hollow sec-
tion are also reported. The overall correlation between the estimate of the
actual frequencies and those derived for the semi-analytical equivalent beam
appears satisfactory, thus offering a promising tool for the analysis of cou-
pling between vehicle attitude manoeuvre and truss deformation. The main
reason of the errors provided in Table 1 lies in the features of the different
truss models, when use is made of a Finite Element (FE) approach or a Low-
Order (L-O) model. The ISS-like truss in Figure 2 is modelled with CBAR
elements, while the equivalent Euler-Bernouilli beam in Figure 3 is assumed
having a uniform thin-wall and hollow section. The modal behavior of the
truss is influenced by the distribution of mass and stiffness, along the main
axis, coming from the complex assembly of bars, while the homogenous slen-
der beam is characterized by a uniform density and cross sectional area. The
difference in terms of natural frequencies is the unavoidable price to pay for
having a reduced order model and this, indeed, limits its use to preliminary
design evaluations.

The modal shape functions of the equivalent Euler-Bernouilli beam are
then used as the assumed modes for modelling the dynamic behaviour of
the whole vehicle, featuring all the additional elements (solar panels and
pressurised modules), following the procedure outlined in Section 3.
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Prior to this step, some simulations are shown which demonstrate the
validity of the results derived for modelling the equivalent beam withe the
assumed modes method, including the rotational inertia of the beam section,
which is not included in the elementary Euler-Bernouilli beam adopted for
enforcing the value of the frequency derived from the FE model.

A non-zero initial condition is thus provided to each Galërkin expansion
variable. The natural frequencies of the free truss (i.e. the system without
solar panels and pressurised modules) are thus obtained from the simulation
and compared to the ones shown in the Table 1.

For ζ1(x, t = 0) = 0.1 and ζ2(x, t = 0) = 0.1 torsional modes are excited.
The response for these two cases is shown in Fig 5. As expected, torsional
modes are decoupled and no angular velocity component (not reported) arise.
The natural frequencies found are close to the FEM ones, with an error
smaller than 10%.
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Figure 5: First and second torsional mode dynamics

The results for deformation in the x-z plane are addressed in Figure 6,
where deformation variables ηz,1(x, t = 0) = 0.1 (with ηz,2 = 0) and ηz,2(x, t =
0) = 0.1 (with ηz,1 = 0) are used as initial conditions for the two numerical
simulation. Once again, the responses exhibits a negligible coupling, with a
negligible excitation of pitch angular velocity component, ω2 arising in the
second case, provided the second mode is characterised by an antisymmetric
shape function. Provided the values of ω2 remain below 10−6 rad/s, the effect
is assumed negligible and not shown in the figures.

A similar result is obtained for flexural deformation in the x-y plane,
when ηy,1(x, t = 0) = 0.1 (with ηy,2 = 0) and ηy,2(x, t = 0) = 0.1 (with
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Figure 6: First and second flexural mode in xz plane
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Figure 7: First and second flexural mode in xy plane
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(with ηy,1 = 0). As for the x-z plane, a negligible coupling between first and
second modes occurs (Figure 7), and ω3 is again only marginally influenced
by the second antisymmetric mode. In both cases, the natural frequencies
are comparable with the FEM model ones, with a relative error smaller than
10%.

4.2. Open-loop control

As a first example of forced behavior of the whole vehicle, an open-loop
control law is discussed, based on a doublet command input on gimbal rates
for CMG 1 and 3, providing an apparent gyroscopic torque command around
x-axis. Figure 8.a shows the gimbal rate command δ̇? and the resulting gimbal
angle δ?, with δ1 = δ? and δ3 = −δ?.
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Figure 8: Doublet command.

The system responds with a rotation around the x axis. Coupling with
deformation in the x-z and x- y planes is induced by pressurized module
inertia during the rotation. The variation of angular velocity components of
FB (top subplot) is clearly dominated by ω1, for the considered control input,
with a resulting variation of the first component of the quaternion vector, q1
(central subplot). The apparent gyroscopic torque, reported in the subplot
at the bottom of Figure 9, exhibit a step variation of the command torque
at maneuver start (t0 = 2 s) and maneuver end (t1 = 7 s).

It is worthwhile observing in Figure 8.b the zero torque line: ω1 decreases
before the zero torque time, because of the torsional reaction of the truss. A
persistent oscillation of roll rate ω1 and quaternion component q1 is evident,
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for t > t1 (no structural damping is modeled at present), which is caused
by the torsional spring effect of the truss, under the action of inertial loads
of solar panels, placed close to the free end of the truss and those of the
group of pressurized modules, placed at its centre. The value of q1 oscillates
around a non-zero mean value, with oscillation amplitude wider than the
average value. Clearly, a sharp control torque profile like that depicted in
the bottom subplot is the main cause of such an undesired behaviour, which
would lead to pointing errors of all pieces of equipment placed along the
truss.
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Figure 9: Response to a gyroscopic torque command around x.

4.3. Closed-loop feedback control

A second maneuver is now considered, under the action of a Quaternion-
Feedback Control (QFC) law, coupled with a gimbal rate command based
on Moore-Penrose pseudo-inverse and null motion for singularity avoidance
(see Appendix for details).

A non-zero initial value for q1 is assumed, which corresponds to an angu-
lar error of 5 deg around the x-axis. Figure 10 demonstrates how the gimbal
rate command drives the spacecraft towards the prescribed attitude in ap-
proximately 60 s, with relevant oscillations of all attitude variables during
the maneuver. Figure 11 provides the response of modal amplitudes, excited
by the initial step variation of the apparent control torque. After the end
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Figure 10: QFC response for an error on q1.
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Figure 11: Structural excitation during QFC response.
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of the maneuver, persistent torsional and flexural vibrations are present, al-
though with a reduced amplitude. Clearly, a smooth command law should be
envisaged, which limits the initial excitation during the acceleration phase,
at maneuver start.

5. Conclusions

A modeling technique is proposed, which allows to derive low-order mod-
els of large deformable space structures, for the analysis of coupling phenom-
ena between attitude maneuvers and structure deformation. The approach is
based on the identification of a simplified equivalent Euler-Bernouilli beam,
which reproduces the main elastic features of the actual truss structure. Then
a hybrid Newtonian-Lagrangian approach is adopted for deriving the model
of the whole vehicles, which includes additional elements, modeled as rigid
bodies attached along the truss. The formulation of vehicle dynamics is re-
ported and described and some open-loop and closed-loop maneuver exam-
ples are reported, when a cluster of control moment gyroscopes is adopted as
attitude effectors. The numerical simulations allowed for an insight on the
tight coupling between apparent gyroscopic control torque and the resulting
vibration induced during the maneuver.

Appendix

Terms of generalized Euler equation for ω

Under the hypothesis of small deformations, the displacement of the cen-
tre of mass with respect to the origin of FB and the angular momentum
provided by deformation rates are given by rOG = ΛxD and hrel = ΓẋD,
respectively, with

Λ =

[0]1×Nt [0]1×Nf
[0]1×Nf

[0]1×Nt [0]1×Nf
Λy

[0]1×Nt Λz [0]1×Nf


Γ =

 Γtors [0]1×Nf
Γxy

[0]1×Nt Γy
flex [0]1×Nf

[0]1×Nt [0]1×Nf
Γz
flex


where:

Λy
i = Λz

i =
1

mtot

[

∫ L/2

−L/2
φidxtr +

4∑
k=1

mspφi(xsp,k)]
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for i = 1, 2 . . . Nf ;

(Γtors)i = J ′x

∫ L/2

−L/2
ψidxtr +

4∑
k=1

Jsp,1ψi(xsp,k)

for i = 1, 2 . . . Nt;

(Γxy)i = m′dtr

∫ L/2

−L/2
φidxtr +

4∑
k=1

msp,k dtr φi(xsp,k)

(Γyflex)i = −m′
∫ L/2

−L/2
φixtrdxtr − J ′y

∫ L/2

−L/2
φ′idxtr+

+
4∑

k=1

[−mspxsp,kφi(xsp,k)− Jsp,2φ′i(xsp,k)]

(Γzflex)i = m′
∫ L/2

−L/2
φixtrdxtr + J ′z

∫ L/2

−L/2
φ′idxtr+

+
4∑

k=1

[mspxsp,kφi(xsp,k) + Jsp,2φ
′
i(xsp,k)]

for i = 1, 2 . . . Nf .
The acceleration a0, expressed in terms of pseudo-body frame compo-

nents, is given by

a0 = −r̈OG − ω̇ × rOG − 2ω × ṙOG − ω × ω × rOG

And the static moment term is

S× a0 = mtotr0G × a0

Upon substitution of rOG = ΛxD, ṙOG = ΛẋD, and r̈OG = ΛẍD, one can
derive the expressions for matrices ∆Λ and J rmc. In particular

∆Λ = mtot

[0]1×Nt −yGΛy zGΛz

[0]1×Nt [0]1×Nf
[0]1×Nf

[0]1×Nt [0]1×Nf
[0]1×Nf


∆J rcm = −mtot

(y2G + z2G) 0 0
0 z2G −yGzG
0 −yGzG y2G
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Terms of Lagrange equation for deformation variables

Mass Matrix

M =

 Mζζ [0]Nf×Nf
Mζηy

[0]Nf×Nt Mηzηz [0]Nf×Nf

Mηyζ [0]Nf×Nf
Mηyηy


with

(Mζζ)i,j = J ′x

∫ L/2

−L/2
ψiψjdxtr+

+
4∑

k=1

J̃sp,1 ψi(xsp,k)ψj(xsp,k)

for i, j = 1, 2 . . . Nt

(Mηzηz)i,j = m′
∫ L/2

−L/2
φiφjdxtr + J ′y

∫ L/2

−L/2
φ′iφ

′
jdxtr+

+
4∑

k=1

[mspφi(xsp,k)φj(xsp,k) + J̃sp,2φ
′
i(xsp,k)φ

′
j(xsp,k)]

(Mηyηy)i,j = m′
∫ L/2

−L/2
φiφjdxtr + J ′z

∫ L/2

−L/2
φ′iφ

′
jdxtr+

+
4∑

k=1

[mspφi(xsp,k)φj(xsp,k) + J̃sp,3 φ
′
i(xsp,k)φ

′
j(xsp,k)]

for i, j = 1, 2 . . . Nf

(Mζηy)i,j = (Mηyζ)j,i =
4∑

k=1

−J̃sp,13 φ′j(xsp,k)ψi(xsp,k)

for i = 1, 2 . . . Nt and j = 1, 2 . . . Nf

Stiffness Matrix

K =

 Kζζ [0]Nf×Nf
[0]Nf×Nf

[0]Nf×Nt Kηzηz [0]Nf×Nf

[0]Nf×Nt [0]Nf×Nf
Kηyηy
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with

(Kζζ)i,j = GJt

∫ L/2

−L/2
ψ′iψ

′
jdxtr

for i, j = 1, 2 . . . Nt

(Kηzηz)i,j = EIyy

∫ L/2

−L/2
φ′′i φ

′′
jdxtr

(Kηyηy)i,j = EIzz

∫ L/2

−L/2
φ′′i φ

′′
jdxtr

for i, j = 1, 2 . . . Nf

Inertial Coupling Matrix

C =

C11 [0]Nt×1 C31

C12 C22 [0]Nf×1
C13 [0]Nf×1 C33


with

(C11)i = J ′x

∫ L/2

−L/2
ψidxtr +

4∑
k=1

[J̃sp,1ψi(xsp,k)]

(C31)i =
4∑

k=1

−J̃sp,13 ψi(xsp,k)

for i = 1, 2 . . . Nt

(C12)i = m′
Nf∑
j=1

[(

∫ L/2

−L/2
φiφjdxtr)ηy,j]+

+
4∑

k=1

[msp

Nf∑
j=1

φi(xsp,k)φj(xsp,k)ηy,j]

(C22)i = −m′
∫ L/2

−L/2
φixtrdxtr − J ′y

∫ L/2

−L/2
φ′idxtr+

+
4∑

k=1

[−mspxsp,kφi(xsp,k)− Jsp,2φ′i(xsp,k)]
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(C13)i = m′dtr

∫ L/2

−L/2
φidxtr −m′

Nf∑
j=1

(

∫ L/2

−L/2
φjφidxtr)ηz,j+

+
4∑

k=1

[mspdtrφi(xsp,k)−msp

Nf∑
j=1

(φi(xsp,k)φj(xsp,k)ηz,j)+

−J̃sp,1 φ′i(xsp,k)]

(C33)i = m′
∫ L/2

−L/2
φixtrdxtr + J ′z

∫ L/2

−L/2
φ′idxtr+

+
4∑

k=1

[mspxsp,kφi(xsp,k) + J̃sp,3φ
′
i(xsp,k)]

for i = 1, 2 . . . Nf .

Inertial terms in the generalized force vector

Qin =

(0)Nt

Qηz
in

Q
ηy
in


with

(Qηz
in)i = −m′ω1

Nf∑
j=1

(

∫ L/2

−L/2
φiφjdxtr)η̇y,j +

∂TV
∂ηz,i

−(msp

Nf∑
j=1

φj(xsp,k)φi(xsp,k)η̇y,j)ω1 +
∂Tsp
∂ηz,i

(Q
ηy
in)i = −m′ω1

Nf∑
j=1

(

∫ L/2

−L/2
φiφjdxtr)η̇z,j +

∂TV
∂ηy,i

−(msp

Nf∑
j=1

φj(xsp,k)φi(xsp,k)η̇y,j)ω1 +
∂Tsp
∂ηy,i
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Solar panels inertia
In the previous equations the position of solar panels along the truss is

xP = (xsp,1 xsp,2 xsp,3 xsp,4)
t and the matrix of inertia of each panel J̃ sp in the

local frame is

J̃sp =

 J̃sp,1 0 J̃sp,13
0 J̃sp,2 0

J̃sp,31 0 J̃sp,3


with

J̃sp,1 = Jsp,1 cos2 θsp + Jsp,3 sin2 θsp

J̃sp,13 = J̃sp,31 = (Jsp,3 − Jsp,1) sin θsp cos θsp

J̃sp,2 = Jsp,2

J̃sp,3 = Jsp,3 cos2 θsp+ Jsp,1 sin2 θsp

θsp = (θ1 θ2 θ3 θ4)
t panels pitch angles

where Jp,1, Jp,2, and Jp,3 and solar panels principal moments of inertia.

Gimbal command

For a desired control torque, mc, the Jacobian matrix

A = hw

−cβcδ1 sδ2 cβcδ3 −sδ4
−sδ1 −cβcδ2 sδ3 cβcδ4
sβcδ1 sβcδ2 sβcδ4 sβcδ4

 ∈ R3×4

determines the angular momentum rate command,

Ḣc = Aδ̇ = −mc − ω ×H

A gimbal rate command is obtained in the form

δ̇ = −A#Ḣc − γn̂

whereA# = AT
(
AAT

)−1
is the Moore–Pensose (MP) pseudoinverse matrix,

whereas n̂ is the direction of the null space of A. The MP pseudo-inverse
provides the minimum norm solution to the redundant problem Ax = b,
with x ∈ Rn, x ∈ Rm, for n > m. The term γn̂, referred to as null motion,
provides a gimbal rate command which does not add anything to the resulting
apparent torque, but allows for singularity avoidance. The weight γ is zero,
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if the singularity measure m =
√

det
(
AAT

)
is sufficiently far from 0, and

it is increased when a singularity is approached, in order to maintain the
cluster far from it.

The desired control torque

mc = −KPq −KDω

is derived according to the quaternion-feedback control law [33]. Simple di-
agonal matrices KP and KD can be adopted, with gains determined from
requirements on bandwidth and damping similar to those adopted in stan-
dard proportional-derivative feedback laws.
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