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via Orabona 4, I-70126 Bari, Italy
bINFN — Sezione di Bari,

via Orabona 4, I-70126 Bari, Italy

E-mail: loredana.bellantuono@ba.infn.it, pietro.colangelo@ba.infn.it,

floriana.giannuzzi@ba.infn.it

Abstract: The spectrum of the glueball with JPC = 0−− is computed using different

bottom-up holographic models of QCD. The results indicate a lowest-lying state lighter

than in the determination by other methods, with mass m ' 2.8 GeV. The in-medium

properties of this gluonium are investigated, and stability against thermal and density

effects is compared to other hadronic systems. Production and decay modes are identified,

useful for searching the JPC = 0−− glueball.

Keywords: QCD Phenomenology, Strings and branes phenomenology

ArXiv ePrint: 1507.07768

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP10(2015)137

mailto:loredana.bellantuono@ba.infn.it
mailto:pietro.colangelo@ba.infn.it
mailto:floriana.giannuzzi@ba.infn.it
http://arxiv.org/abs/1507.07768
http://dx.doi.org/10.1007/JHEP10(2015)137


J
H
E
P
1
0
(
2
0
1
5
)
1
3
7

Contents

1 Introduction 1

2 Oddballs in bottom-up AdS/QCD 2

2.1 Hard-wall model (HW) 3

2.2 Soft-wall model (SW) 4

2.3 Einstein-dilaton model (ED) 5

3 Oddballs in medium 6

4 JPC = 0−− glueball phenomenology 11

5 Conclusions 13

1 Introduction

The existence of bound states of gluons (the so-called “gluonia” or “glueballs”), with a rich

spectroscopy and a complex phenomenology, is one of the early predictions resulting from

the non-Abelian nature of strong interactions described by QCD [1]. However, after about

40 years of experimental efforts, evidence of no one of such gluonic states has been unam-

biguously established [2]. The glueball with JPC = 0++, expected to be the lightest one,

shares the vacuum quantum numbers with q̄q states; as a consequence, hadrons can result

from the mixing between quark-antiquark and gluonium components. The scalar isoscalar

mesons f0(1370), f0(1500) and f0(1710) are candidates for such light mixed states, with

uncertain mixing angles inferred from the production processes and decay modes [3]. The

JPC = 2++ glueball, predicted to be heavier than the scalar one, can mix with conventional

q̄q P -wave configurations, therefore also the identification of the tensor glueball is difficult.

A signature for the experimental investigations is that gluonia overpopulate the meson

multiplets with fixed quantum numbers. Moreover, since glueballs are SU(3)F singlets,

they are expected to equally couple to u, d and s quarks with clear predictions of the decay

fractions in pions, etas and kaons. However, the chiral behaviour of such couplings needs

also to be taken into account: it can induce deviations from the flavor-symmetric condition

due to a quark mass dependence, as discussed for the JPC = 0++ state in [4], and this

makes the glueball identification further involved.

Remarkably, there is the possibility of having gluonia with combinations of JPC not

allowed in the quark model; therefore, searching for states with such “exotic” quantum

numbers is a strategy to look for gluonic resonances. An interesting case is JPC = 0−−:

glueballs with these quantum numbers, as for all states with negative charge conjugation,

must be composed by an odd number of constituent gluons, which justifies the name of

“oddballs”. Although C-odd gluonia are expected to be heavier than the scalar glueball,

they are within the reach of the present-day experimental facilities.
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Little theoretical information is available about gluonic resonances with JPC = 0−−.

In the old flux-tube model, Isgur and Paton predicted m0−− = 2.79 GeV, with the mass

ordering in the gluonium spectrum: m0++ < m0−− ∼ m2++ [5]. Lattice QCD simulations

have reported a large value for the mass: m0−− = 5.166 GeV, with an estimated uncertainty

of 1 GeV; in the same calculation, the mass of the lightest glueball is m0++ = 1.795 GeV,

with 3.3% uncertainty [6]. Two stable 0−− oddballs have been obtained using QCD sum

rules, with mass m0−− = 3.81 ± 0.12 GeV and m0−− = 4.33 ± 0.13 GeV, respectively [7].

In all cases, the width and the hadronic couplings are unknown. On the experimental

side, analyses of the D0 → π+π−π0 decay mode indicate that the final state is nearly

completely dominated by a I = 0, JPC = 0−− configuration [8]; however, the confirmation

of the contribution of a resonance close to D0 (the D0 mass is 1864.84 MeV), together with

the interpretation of this puzzling result, requires a further scrutiny.

An interesting method for computing various hadronic properties is inspired by the

AdS/CFT (Anti-de Sitter/conformal field theory) correspondence [9–11]. In this approach,

at large ‘t Hooft coupling and in the limit of large number of colors Nc, the correlation

functions of gauge-invariant operators in a 4D gauge field theory are derived by a clas-

sical gravity theory in a higher dimensional space.1 The calculation of the mass of the

scalar JPC = 0++ and tensor JPC = 2++ glueballs is one of the first applications of the

method [13–18], starting from the top-down construction based on a type II-A supergravity

with supersymmetry and conformal invariance broken, and a Yang-Mills theory at large

Nc as a dual [10]. Including matter fields, the analysis has been extended to the glue-

ball hadronic couplings [19, 20]. The mass spectrum of the C−odd JPC = 1+− and 1−−

glueballs has been computed in the top-down construction, too [17].

The gauge/gravity duality method has also been applied in a more phenomenological

procedure which attempts to formulate, through a bottom-up construction, higher dimen-

sional models able to reproduce the largest number of QCD properties. Here, we follow this

bottom-up approach which has been used to describe conventional q̄q [21–25] and hybrid

mesons [26], as well as glueballs [27–30]. We focus on the lightest oddball with the aim of

determining properties like the mass spectrum.

In section 2 we compute the spectrum of the JPC = 0−− gluonium in three different

holographic models of QCD, identifying robust predictions and discussing the uncertainties.

Other interesting aspects to investigate concern the properties of the glueball in a ther-

malized and dense hadronic medium. Pointing out the differences with respect to ordinary

q̄q mesons provides us with a better understanding of this gluonium state, namely about

its stability features. The calculation is affordable in the holographic framework, and is

carried out in section 3. From the experimental viewpoint, it is important to identify the

main production processes and the decay modes useful for the searches of the JPC = 0−−

glueball: this is done in section 4, before presenting the conclusions of our study.

2 Oddballs in bottom-up AdS/QCD

In gauge/gravity inspired models of QCD, the starting point is the association of gauge

invariant boundary theory operators to fields defined on an AdS5 manifold, with modifica-

1An overview can be found in [12].
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tions needed to describe confinement. In QCD, composite gauge-invariant local operators

with quantum numbers JPC = 0−−, involving only gluon fields, can be written in terms of

the gluon field strength Gaµν(x) and the dual G̃aµν(x) = 1
2εµνρσG

a
ρσ(x):

JA(x) = g3
sdabc[η

t
αβG̃

a
µν(x)][∂α∂βG

b
νρ(x)][Gcρµ(x)]

JB(x) = g3
sdabc[η

t
αβG

a
µν(x)][∂α∂βG̃

b
νρ(x)][Gcρµ(x)]

JC(x) = g3
sdabc[η

t
αβG

a
µν(x)][∂α∂βG

b
νρ(x)][G̃cρµ(x)] (2.1)

JD(x) = g3
sdabc[η

t
αβG̃

a
µν(x)][∂α∂βG̃

b
νρ(x)][G̃cρµ(x)] ,

with a, b, c color indices, dabc the symmetric SU(3)c structure constants, and gs the strong

coupling constant. The transverse ηtαβ metric is defined as ηtαβ = ηαβ −
∂α∂β
∂2

, with α, β (as

well as µ, ν) 4D Lorentz indices, and ηαβ the Minkowski metric tensor [7].

We focus on only one operator in (2.1), generically denoted as J0(x), which has con-

formal dimension ∆ = 8, and associate to J0(x) a dual field in AdS5, O0(x, z), with mass

obtained by the relation M2
5R

2 = ∆(∆− 4) [10, 11]. R is the AdS5 radius; we set R = 1.

We choose Poincarè coordinates xM = (xµ, z) = (x0, ~x, z) for the AdS5 space, with

line element

ds2 = gMNdxMdxN =
1

z2

(
dx2

0 − d~x2 − dz2
)

(2.2)

(0 < z), and define an action for the field O0(x, z). To account for confinement in QCD,

in the definition of the action the breaking of conformal invariance must be implemented:

this can be done in different ways, some of which are used in the following.

2.1 Hard-wall model (HW)

A simple way of modeling confinement in the holographic setup is by considering a slice of

the AdS5 space, with a sharp cutoff at a finite distance zm along the extra dimension [21, 22].

The 5D action for O0(x, z) can then be written as

S(HW ) =
1

k

∫
d5x
√
g
[
gMN∂MO0 ∂NO0 −M2

5O
2
0

]
, (2.3)

with ε ≤ z ≤ zm and g = |det(gMN )|. The constant k makes the action dimensionless, and

its derivation is presented in the next section. The value of 1/zm sets the hadronic scale

in the model, so that the dimensionful quantities are given in terms of this parameter.

The equation of motion for the Fourier image Õ0(p, z) of O0(x, z),

− p2

z3
Õ0(p, z)− ∂z

[
1

z3
∂zÕ0(p, z)

]
+
M2

5

z5
Õ0(p, z) = 0 , (2.4)

together with the Dirichlet boundary condition for Õ0(p, z) at the ultraviolet z = ε brane,

Õ0(p, ε) = 0 (with ε→ 0+), and the Neumann boundary condition at the infrared z = zm
brane, ∂zÕ0(p, zm) = 0, allows to compute the spectrum. The resulting lightest masses,

setting 1/zm = 346 MeV, are collected in figure 1. The masses of the first two states are

m0 = 2.80 GeV and m1 = 4.14 GeV, respectively. Such values reduce to m0 = 2.61 GeV

and m1 = 3.86 GeV if the hadronic scale is 1/zm = 323 MeV; both values of 1/zm are used

– 3 –
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Figure 1. Spectrum of the JPC = 0−− gluonium by the HW model, with 1/zm = 346 MeV.

in phenomenological analyses [21]. A linear dependence is obtained for mn vs the radial

(in the extra dimension) quantum number n, a feature shared by other hadrons described

by this model.

2.2 Soft-wall model (SW)

A different way of breaking the conformal invariance and modeling confinement in QCD

consists in including a background field φ(z) in the 5D action for O0(x, z) [23]. In particular,

the profile φ(z) = c2z2, which involves a parameter c fixing the hadronic scale, allows to

obtain linear Regge trajectories and has been employed to study aspects of the light hadron

phenomenology [23, 24]. The action for the field O0(x, z) is

S(SW ) =
1

k

∫
d5x
√
ge−φ(z)

[
gMN∂MO0 ∂NO0 −M2

5O
2
0

]
, (2.5)

with ε < z <∞. The normalizable solutions of the equation of motion for Õ0(p, z),

e−φ(z)

z3
(−p2)Õ0(p, z)− ∂z

[
e−φ(z)

z3
∂zÕ0(p, z)

]
+
M2

5 e
−φ(z)

z5
Õ0(p, z) = 0 , (2.6)

correspond to the Regge-like mass spectrum

m2
n = 4c2(n+ 4) . (2.7)

The gluonium turns out to be heavier than conventional q̄q mesons, than the JPC = 1−+

hybrid and the 0++ glueball, as one infers from the spectral relations in table 1. However,

the mass difference with respect to ordinary hadrons is smaller than obtained by different

calculations. Setting c = mρ/2 = 388 MeV from the ρ meson mass [23], we get m0 =

1.55 GeV and m1 = 1.74 GeV, while the value c = 474 MeV reproducing the ρ−meson

Regge trajectory corresponds to m0 = 1.90 GeV and m1 = 2.12 GeV. Hence, the SW

model indicates a light oddball, as for other mass predictions in the same framework.

The two-point correlation function of J0(x) in QCD

Π(p2) = i

∫
d4x eipx〈0|T [J0(x)J†0(0)]|0〉 (2.8)

– 4 –
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JPC 1−− (qq̄) [23] 0++ (qq̄) [24] 0++ (glueball) [28] 1−+ [26] 0−−

m2
n 4c2(n+ 1) 4c2(n+ 3/2) 4c2(n+ 2) 4c2(n+ 2) 4c2(n+ 4)

Table 1. Mass spectrum of qq̄ vector and scalar states, 0++ glueball, q̄Gq 1−+ hybrid, and 0−−

gluonium, obtained in the SW model.

can be computed using the AdS/CFT dictionary identifying J0(x) as the source of O0(x, z).

We define the (4D Fourier transformed) bulk-to-boundary propagator K̃(p, z) of the glue-

ball field using the equation:

Õ0(p, z) = K̃(p, z)J̃0(p) , (2.9)

with Õ0(p, z) and J̃0(p) the 4D Fourier transformed bulk field and source, respectively, and

differentiate twice the on-shell action (2.5) with respect to J0. The two-point correlation

function, obtained for J0 → 0,

Π(p2) =
2

k

[
e−φ(z)

z3
K̃(p2, z)∂zK̃(p2, z)

]
z→0

, (2.10)

can be written as

Π(p2) =
∑
n

Rn
p2 −mn

2
(2.11)

with the residues

Rn = − 4

15

(n+ 6)!

6!n!

c14

k
. (2.12)

Comparing the p2 → −∞ asymptotic behaviour of Π(p2) in QCD [7]

ΠQCD(p2) =
487α3

s

143 26 33 π

(
−p2

)6
log

(
−p2

Λ2

)
(2.13)

with the expression (2.10) in the same limit, we fix k (for Nc = 3):

k = − 143π

487 210 52 α3
s

. (2.14)

The same expression holds in the HW model.

2.3 Einstein-dilaton model (ED)

In both the HW and SW models the implementation of the confinement mechanism, with an

AdS5 background geometry, is an input assumption defining each model. More elaborated

approaches include dynamical fields. A dynamical holographic model of QCD has been

formulated in [31, 32], with a scalar dilaton field Φ(z) in the bulk and the 5D gravitation-

dilaton coupled action analysed. The resulting geometry takes the form:

ds2
(ED) =

e2As(z)− 4
3

Φ(z)

z2

[
dx2

0 − d~x2 − dz2
]
. (2.15)

– 5 –
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The function As(z) introduces a quadratic correction in the warp factor distorting the

AdS5 metric, and is chosen with the expression As(z) = c̄ k̄2 z2. The profile of the dilaton

is obtained solving the Einstein equations for the metric-dilaton system, and with the

chosen ansatz for As(z), Φ(z) reads

Φ(z) =
3

4
c̄ k̄2 z2

(
1 + 2F2

(
1, 1; 2,

5

2
; 2c̄ k̄2 z2

))
(2.16)

in terms of the generalized hypergeometric function 2F2. In the model, the dimensionful

parameter k̄ is set to k̄ = 0.43 GeV. c̄ is c̄ = ±1, and both cases reproduce, at finite

temperature, QCD bulk thermodynamical properties such as the energy density and the

speed of sound. On the other hand, the analysis of the thermodynamical properties of loop

operators favours the positive sign; hence, we set c̄ = +1.

The equation of motion for the oddball field O0(x, z) with the metric (2.15)–(2.16) pro-

vides for the two lightest states the mass m0 = 2.82 GeV and m1 = 4.07 GeV, respectively,

close to the result of the HW model.

The outcome of the analyses in the three models is that the mass of the lowest-lying

0−− state is sensibly lighter than obtained in [6, 7], with results spanning the range

1.55 − 2.82 GeV. The upper value, obtained in the HW and ED models, is close to the

prediction of the flux-tube model. For the first excited state, the predicted mass is in the

range 1.74−4.07 GeV, with again the lighter value given by the SW model. The indication

in favour of a light oddball is a surprising result with interesting phenomenological impli-

cations. Indeed, one can look for this state in the same class of processes investigated for

searching the 0++ gluonium, namely radiative quarkonium decays including charmonium.

The second consequence is that there is enough phase-space for 0−− decays with a quite

clear experimental signature. We discuss both the issues in section 4.

3 Oddballs in medium

Before addressing the phenomenology of the lightest oddball, it is interesting to use the

same holographic machinery to investigate other aspects of this gluonic state, namely its

features in a thermalized and dense hadronic medium. The aim is to make a comparison

with the conventional light vector meson and with the scalar glueball, inferring information

on the stability properties of the oddball against thermal and density fluctuations. In

the holographic approach, the inclusion of matter effects is affordable using appropriate

bulk geometries [12]. For definiteness, we consider the SW model for which many results

concerning other hadrons are available for the comparison [33, 34].

To investigate in-medium effects on the oddball spectrum, we use the 5D Reissner-

Nordström AdS metric (AdS/RN). The issue of which phase of QCD is described by this

bulk geometry is deferred to the end of this section; for the time being, we consider the

possibility of describing a stable or a metastable phase [35].

The AdS/RN geometry is defined by the line element

ds2
(RN) = gMN

(RN)dxMdxN =
1

z2

(
f(z)dx2

0 − d~x2 − dz2

f(z)

)
(3.1)

– 6 –
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with the function f(z) given by

f(z) = 1−
(

1

z4
h

+ q2z2
h

)
z4 + q2z6. (3.2)

At q = 0 the geometry (3.1), (3.2) reduces to the AdS/black-hole metric. zh is the position

of the outer horizon of the black-hole, the lowest value of the coordinate z satisfying the

condition f(zh) = 0. Defining Q = qz3
h and imposing the condition 0 6 Q 6

√
2, the

black-hole temperature is

T =
1

4π

∣∣∣∣dfdz
∣∣∣∣
z=zh

=
1

πzh

(
1− Q2

2

)
. (3.3)

In (3.2) q is the charge of the black-hole, which can be holographically related to the quark

chemical potential µ. In the QCD generating functional, µ multiplies the quark number

operator Oq(x) = q†(x)q(x). Invoking the gauge/gravity correspondence, the coefficient µ

can be considered as the source of the bulk field associated to Oq(x), the time component of

a U(1) gauge field AM (x, z). The AdS/RN metric results from the gravitational interaction

of this U(1) field. Within the SW model, we make use of the AdS/RN geometry together

with the background dilaton characterizing the model.

To fulfil rotational invariance, the U(1) field AM has components Ai = 0 for i = 1, 2, 3, z

, while the component A0 has the expansion, for z → 0,

A0(z) = µ− κ q z2 . (3.4)

The condition that A0 vanishes at the horizon, A0(zh) = 0, provides a linear relation

between µ and q (or µ and Q),

µ = κ
Q

zh
(3.5)

in terms of a dimensionless parameter κ that can be determined from various observ-

ables [36]. In the following we set κ = 1, giving the quark chemical potential up to a

numerical factor. We also set the dilaton parameter c = 1 and the dimensionful quantities

in units of such a scale.

The equation for the bulk-to-boundary propagator K̃(p, z), obtained from the ac-

tion (2.5) with AdS/RN background geometry, reads:

∂z

[
e−φ(z)

z3
f(z)∂zK̃(p, z)

]
+
e−φ(z)

z3

[
p2

0

f(z)
− ~p 2

]
K̃(p, z)− M2

5 e
−φ(z)

z5
K̃(p, z) = 0 . (3.6)

In the frame with ~p = 0, defining ω2 = p2
0 and using the variable u = z/zh, we compute

the solution of (3.6) with the boundary conditions

K̃(ω2, u) ∼ 1

z4
hu

4
(u→ 0)

K̃(ω2, u) ∼ (1− u)
−i
√
ω2z2

h
4−2Q2 (u→ 1). (3.7)

– 7 –
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Figure 2. Spectral function for the JPC = 0−− oddball in the SW model with the metric (3.1)–

(3.2), at µ = 0 and for several values of T . In the plotted function ρ(ω2)/(ω2)6 the constant

10−8k/(2z8h) has been factorized out. The dimensionful quantities are in units of the scale c.

The latter condition selects the in-falling solution near the horizon. Hence, the retarded

Green’s function is worked out [37–39],

ΠR(ω2) =
2

k

[
e−φ(z)

z3
f(z)K̃(ω2, z)∂zK̃(ω2, z)

]
z→0

, (3.8)

and the spectral function ρ(ω2) = =
(
ΠR(ω2)

)
is determined in ranges of temperature and

chemical potential.

At µ = 0, the result in the range of ω2 corresponding to the lightest resonance is

depicted in figure 2, where we plot ρ(ω2)/(ω2)6 (factorizing the constant 10−8k/(2z8
h)) to

account for the ρ large-ω2 dependence. At small T the spectral function displays a narrow

resonance, with vanishing width for T → 0. As T increases changing the bulk geometry, the

peak moves towards smaller values of ω2, accompanied by a broadening of the line shape:

the thermal effects on the gluonium reduce the mass and make the state unstable. At

some value of T the peak disappears from the spectral function, indicating the in-medium

melting of the state.

Also at finite µ the peaks of the spectral function broaden and move towards smaller

values of ω2 as T increases, up to a point where no peak can be distinguished. The

same behavior is observed at fixed temperature, increasing the chemical potential. The

broadening is a signal that, as the temperature or the quark chemical potential increases,

the states become unstable, getting a finite width (a quantum-mechanical argument for

such a behavior is in [34]). The results are collected in figure 3 for two values of µ and T .

To quantitatively extract the temperature and chemical potential dependence of the

lightest oddball mass, we fit the peak in the spectral function ρ(ω2) using a Breit-Wigner-

like expression [33, 40]:

ρBW (ω2) =
a (ω2)bmΓ

(ω2 −m2)2 +m2Γ2
, (3.9)

obtaining the mass m and width Γ of the state (a and b are parameters in the fit). The

melting temperature and chemical potential are obtained looking at the values of T, µ

where the peak in the spectral function is reduced by a factor (we choose 20) with respect

– 8 –
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Figure 3. Spectral function ρ(ω2)/(ω2)6 at fixed µ = 0.08 for different values of the temperature

(left), and at fixed T = 0.045 for different values of the chemical potential (right). In the plotted

function the constant 10−8k/(2z8h) has been factorized out. The dimensionful quantities are in

units of c.

Figure 4. m2 (up) and width (down) of the lightest JPC = 0−− glueball, at fixed µ = 0.08 for

different values of temperature (left) and at fixed T = 0.045 for different values of chemical potential

(right), in the AdS/RN SW model. The dimensionful quantities are in units of c.

to the point where the line-shape starts broadening. The results for two values of T and µ

are shown in figure 4, and a synopsis of the T − µ dependence is presented in figure 5.

One can now make a comparison with other hadrons. Considering light vector and

scalar q̄q mesons, the lightest scalar glueball and hybrid mesons, the values of T and µ

where the peak of the lowest lying oddball disappears from the spectral function are by

far smaller [26, 34]. This can be interpreted as an indication of a higher sensitivity of this

hadron to thermal and matter effects at T 6= 0 and µ 6= 0, and that the state is less stable

than other conventional hadrons.

In the above discussion, we have assumed the AdS/RN geometry as suitable to for-

mulate a QCD dual regardless of the values of T and µ. However, with this geometry it is

known that duality holds above a line in the T −µ plane, where the deconfined phase is re-

alized; at small T and µ AdS/RN represents a metastable phase, the confining phase being

described, e.g. at µ = 0, by thermal-AdS. The transition between the two phases is holo-

– 9 –
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Figure 5. m2 and width Γ of the lightest JPC = 0−− glueball, computed in a range of temperature

T and chemical potential µ, in the SW model with AdS/RN metric. The dimensionful quantities

are in units of the scale in the model, the parameter c.

graphically represented by a Hawking-Page transition [35]. This can be seen considering

in greater detail the limit T → 0 with finite chemical potential µ.

In the AdS/Reissner-Nordström model the limit T → 0 , µ 6= 0 corresponds to Q2 → 2

(while zh → ∞ corresponds to T = 0 and µ = 0). This is the case of an extremal black

hole with coinciding outer and inner horizon. The black hole function has a double zero in

z = zh:

f(z) =

(
1− z

zh

)2(
1 +

z

zh

)2(
1 + 2

z2

z2
h

)
. (3.10)

Moreover, at T = 0 the geometry has a horizon and a non-vanishing entropy, a known

feature of models based on the RN metric and used in the framework of the emergent

quantum criticality. Other consequences are in the determination of the spectral functions,

where the behavior of the solution of the equation of motion near the horizon is needed.

For Q2 = 2 the asymptotic solution contains divergent terms proportional to p2
0, which

hinder the selection of the in-falling condition. In studies of, e.g., transport coefficients at

T = 0 and µ 6= 0, the condition ~p 6= 0 together with the limit p0 → 0 avoids divergences in

the correlation functions [41].

It has been proposed to study the points at T = 0 , µ 6= 0 considering a model having

the function f(z) in the geometry given by [36]

f(z) = 1 + q2z6 (3.11)

and the time-component A0(z) in (3.4). The metric (3.1), (3.11) is solution of the Einstein

equations, with the condition f(zh) = 0 replaced by putting to zero the coefficient of z4.

While in the HW model the vanishing A0(z0) = 0 at the IR brane provides a relation

between µ and q, in the SW model, a linear relation between µ and q can be assumed,

with the coefficient fixed computing the boundary action [42]; the dilaton term in the

action allows to cure the divergence of f and A0 at large z (naked singularity). As in the

thermal AdS model, the temperature can also be implemented using a periodic Euclidean

time coordinate. The obtained geometry (thermal charged AdS - tcAdS) is proposed as

– 10 –
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Figure 6. m2 vs µ at T = 0 for the first two states of the JPC = 0−− gluonium, in the SW model

with geometry (3.1), (3.11). The dimensionful quantities are in units of the scale c.

a dual of the confined phase of QCD at small temperature and chemical potential, while

the AdS/Reissner-Nordström model describes the deconfined phase, with a Hawking-Page

transition between the two phases [36].

Using the geometry (3.1), (3.11) at T = 0, the two lightest gluonium states have mass

as depicted in figure 6, and at small T the results remain unaffected. The difference with

respect to the AdS/RN model is the increasing behaviour vs µ, a confirmation that the

two models describe different phases of QCD.

The conclusion of the analysis is that, using AdS/RN, the 0−− oddball is more sensitive

to matter effects than all other hadrons studied in the same framework, including the 0++

glueball and the 1+− hybrid [26, 34]. On the other hand, with the tcAdS geometry a

peculiar µ-dependence of the hadron mass is found.

4 JPC = 0−− glueball phenomenology

In our calculations the lowest gluonium state with JPC = 0−− is quite light. On the

basis of this result, we select suitable processes for the production and the identification

of this state.2 Our guidelines are the quantum number selection rules, since the relevant

hadronic couplings cannot be computed in the models we are using here. For definiteness,

we consider the lightest oddball with mass m0−− = 2.8 GeV.

Production modes in radiative and hadronic two-body transitions, occurring in differ-

ent waves, are collected in table 2. Spin 1++ charmonium and bottomonium states decay

radiatively in the 0−− oddball in S- and D-wave, while 2++ states decay in D-wave. The

suppression Γ(χc1(1P )→γ G(0−−))
Γ(J/ψ→γ G(0++))

' αs(mc) is expected, while radiative processes in bot-

tomonium, which are phase-space favored, are suppressed by (eb/ec)
2 with respect to the

corresponding charmonium rates. The hadronic decay mode X(3872) → ωG(0−−) is at

the limit of the phase space, and the bottomonium modes χb1(nP ) → ωG(0−−) are al-

lowed. Another interesting process involves the isoscalar scalar ππ configuration in the final

state, namely hc(1P ) → π+π−G(0−−), together with the bottomonium counterpart, the

hb(1P ) → f0(980)G(0−−) and hb(2P ) → f0(980)G(0−−) transitions. Other charmonium

decays in P-wave, namely ψ(nS)→ G(0−−)χc0(1P ) and χc1(nP )→ G(0−−)J/ψ (with the

2A few modes are mentioned in ref. [7].
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radiative transition

χc1(3510)→ γ G(0−−) χb1(9892)→ γ G(0−−)

X(3872)→ γ G(0−−) χb1(10255)→ γ G(0−−)

χc2(3556)→ γ G(0−−) χb2(9912)→ γ G(0−−)

χc2(3927)→ γ G(0−−) χb2(10269)→ γ G(0−−)

hadronic transition

X(3872)→ ωG(0−−) χb1(10255)→ (ω, φ, J/Ψ)G(0−−)

Υ(nS)→ (f1(1285), χc1, X(3872))G(0−−)

hc(3525)→ ππ (I = 0)G(0−−) hb(9899)→ f0(980)G(0−−)

hb(10260)→ f0(980)G(0−−)

hb(9899)→ G(0++)G(0−−)

hb(10260)→ G(0++)G(0−−)

Table 2. Production modes of the JPC = 0−− glueball, for m0−− = 2.8 GeV.

mode

G(0−−)→ γ f1(1285)

G(0−−)→ ω f1(1285)

G(0−−)→ ρ a1(1260) (I = 0)

G(0−−)→ h1(1270) f0(980)

G(0−−)→ ρ π (I = 0)

G(0−−)→ K∗K (I = 0)

G(0−−)→ (η, η′)(ω, φ)

Table 3. Decay modes of the JPC = 0−− glueball, m0−− = 2.8 GeV.

corresponding bottomonium transitions), are only possible for very heavy c̄c (b̄b) decaying

states. We remark the P-wave two-body hb(nP ) decays in JPC = 0++ scalar glueball and

JPC = 0−− oddball, which are very peculiar modes for the exclusive gluonium production.

Decay modes of the JPC = 0−− glueball are listed in table 3. In addition to the modes

involving the axial I = 0 f1(1285) meson, it is worth mentioning the full set of P−wave

decays, among which there is ρπ(I = 0). The couplings governing the various modes cannot

be computed in the framework discussed here, and require specific calculations deferred to

a dedicated study.
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5 Conclusions

Our main result is that the lowest-lying JPC = 0−− glueball, examined in different bottom-

up holographic models of QCD, is lighter than envisaged by other approaches. This opens

interesting possibilities for the experimental search of this unconventional hadron. We have

also investigated the in-medium effects, obtaining that using AdS/RN the 0−− oddball is

more sensitive to matter effects than all other hadrons studied in the same framework. On

the other hand, with the tcAdS geometry a peculiar µ-dependence of the hadron mass is

found. Several production and decay modes can be exploited for the search of this elusive

gluonium resonance.

As a final remark, we find inspiring that the lowest mass we have obtained using the SW

model is close to the D0 mass, in view of the dominance observed in D0 → π+π−π0 of an

exotic JPC = 0−− isoscalar state. It is worth reconsidering this issue in a dedicated study.
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