97 research outputs found

    True ternary fission of superheavy nuclei

    Full text link
    We found that a true ternary fission with formation of a heavy third fragment (a new type of radioactivity) is quite possible for superheavy nuclei due to the strong shell effects leading to a three-body clusterization with the two doubly magic tin-like cores. The simplest way to discover this phenomenon in the decay of excited superheavy nuclei is a detection of two tin-like clusters with appropriate kinematics in low-energy collisions of medium mass nuclei with actinide targets. The three-body quasi-fission process could be even more pronounced for giant nuclear systems formed in collisions of heavy actinide nuclei. In this case a three-body clusterization might be proved experimentally by detection of two coincident lead-like fragments in low-energy U+U collisions.Comment: 4 pages, 7 figure

    Structure properties of 226{}^{226}Th and 256,258,260{}^{256,258,260}Fm fission fragments: mean field analysis with the Gogny force

    Full text link
    The constrained Hartree-Fock-Bogoliubov method is used with the Gogny interaction D1S to calculate potential energy surfaces of fissioning nuclei 226{}^{226}Th and 256,258,260{}^{256,258,260}Fm up to very large deformations. The constraints employed are the mass quadrupole and octupole moments. In this subspace of collective coordinates, many scission configurations are identified ranging from symmetric to highly asymmetric fragmentations. Corresponding fragment properties at scission are derived yielding fragment deformations, deformation energies, energy partitioning, neutron binding energies at scission, neutron multiplicities, charge polarization and total fragment kinetic energies.Comment: 15 pages, 23 figures, accepted for publication in Phys. Rev. C (2007

    Mass distributions for induced fission of different Hg isotopes

    Full text link
    With the improved scission-point model the mass distributions are calculated for induced fission of different Hg isotopes with the masses 180-196. The drastic change in the shape of the mass distribution from asymmetric to symmetric is revealed with increasing mass number of the fissioning Hg isotope, and the reactions are proposed to verify this prediction experimentally. The asymmetric mass distribution of fission fragments observed in the recent experiment on the fission of 180Hg is explained. The calculated mass distribution and mean total kinetic energy of fission fragments are in a good agreement with the available experimental data

    Role of Fragment Higher Static Deformations in the Cold Binary Fission of 252^{252}Cf

    Get PDF
    We study the binary cold fission of 252^{252}Cf in the frame of a cluster model where the fragments are born to their respective ground states and interact via a double-folded potential with deformation effects taken into account up to multipolarity λ=4\lambda=4. The preformation factors were neglected. In the case when the fragments are assumed to be spherical or with ground state quadrupole deformation, the QQ-value principle dictates the occurence of a narrow region around the double magic 132^{132}Sn, like in the case of cluster radioactivity. When the hexadecupole deformation is turned on, an entire mass-region of cold fission in the range 138 - 156 for the heavy fragment arise, in agreement with the experimental observations. This fact suggests that in the above mentioned mass-region, contrary to the usual cluster radioactivity where the daughter nucleus is always a neutron/proton (or both) closed shell or nearly closed shell spherical nucleus, the clusterization mechanism seems to be strongly influenced by the hexadecupole deformations rather than the QQ-value.Comment: 10 pages, 12 figure

    Complex nuclear-structure phenomena revealed from the nuclide production in fragmentation reactions

    Full text link
    Complex structural effects in the nuclide production from the projectile fragmentation of 1 A GeV 238U nuclei in a titanium target are reported. The structure seems to be insensitive to the excitation energy induced in the reaction. This is in contrast to the prominent structural features found in nuclear fission and in transfer reactions, which gradually disappear with increasing excitation energy. Using the statistical model of nuclear reactions, relations to structural effects in nuclear binding and in the nuclear level density are demonstrated.Comment: 19 pages, 14 figures, background information on http://www-w2k.gsi.de/kschmidt

    Nearby Doorways, Parity Doublets and Parity Mixing in Compound Nuclear States

    Get PDF
    We discuss the implications of a doorway state model for parity mixing in compound nuclear states. We argue that in order to explain the tendency of parity violating asymmetries measured in 233^{233}Th to have a common sign, doorways that contribute to parity mixing must be found in the same energy neighbourhood of the measured resonance. The mechanism of parity mixing in this case of nearby doorways is closely related to the intermediate structure observed in nuclear reactions in which compound states are excited. We note that in the region of interest (233^{233}Th) nuclei exhibit octupole deformations which leads to the existence of nearby parity doublets. These parity doublets are then used as doorways in a model for parity mixing. The contribution of such mechanism is estimated in a simple model.Comment: 11 pages, REVTE

    Spin Caloritronics

    Get PDF
    This is a brief overview of the state of the art of spin caloritronics, the science and technology of controlling heat currents by the electron spin degree of freedom (and vice versa).Comment: To be published in "Spin Current", edited by S. Maekawa, E. Saitoh, S. Valenzuela and Y. Kimura, Oxford University Pres

    Light Nuclides Produced in the Proton-Induced Spallation of 238U at 1 GeV

    Get PDF
    The production of light and intermediate-mass nuclides formed in the reaction 1H+238U at 1 GeV was measured at the Fragment Separator (FRS) at GSI, Darmstadt. The experiment was performed in inverse kinematics, shooting a 1 A GeV 238U beam on a thin liquid-hydrogen target. 254 isotopes of all elements in the range from Z=7 to Z=37 were unambiguously identified, and the velocity distributions of the produced nuclides were determined with high precision. The results show that the nuclides are produced in a very asymmetric binary decay of heavy nuclei originating from the spallation of uranium. All the features of the produced nuclides merge with the characteristics of the fission products as their mass increases.Comment: 40 pages, 16 figures, 3 table

    Nuclear Fission: : A Review of Experimental Advances and Phenomenology

    Get PDF
    In the last two decades, through technological, experimental and theoretical advances, the situation in experimental fission studies has changed dramatically. With the use of advanced production and detection techniques both much more detailed and precise information can now be obtained for the traditional regions of fission research and, crucially, new regions of nuclei have become routinely accessible for fission studies.
 This work first of all reviews the recent developments in experimental fission techniques, in particular the resurgence of transfer-induced fission reactions with light and heavy ions, the emerging use of inverse-kinematic approaches, both at Coulomb and relativistic energies, and of fission studies with radioactive beams.
 The emphasis on the fission-fragment mass and charge distributions will be made in this work, though some of the other fission observables, such as prompt neutron and γ-ray emission will also be reviewed.
 A particular attention will be given to the low-energy fission in the so far scarcely explored nuclei in the very neutron-deficient lead region. They recently became the focus for several complementary experimental studies, such as β-delayed fission with radioactive beams at ISOLDE(CERN), Coulex-induced fission of relativistic secondary beams at FRS(GSI), and several prompt fusion-fission studies. The synergy of these approaches allows a unique insight in the new region of asymmetric fission around <sup>180</sup>Hg, recently discovered at ISOLDE. Recent extensive theoretical efforts in this region will also be outlined.
 The unprecedented high-quality data for fission fragments, completely identified in <i>Z</i> and <i>A</i>, by means of reactions in inverse kinematics at FRS(GSI) and VAMOS(GANIL) will be also reviewed. These experiments explored an extended range of mercury-to-californium elements, spanning from the neutron-deficient to neutron-rich nuclides, and covering both asymmetric, symmetric and transitional fission regions.
 Some aspects of heavy-ion induced fusion-fission and quasifission reactions will be also discussed, which reveal their dynamical features, such as the fission time scale. The crucial role of the multi-chance fission, probed by means of multinucleon-transfer induced fission reactions, will be highlighted.
 The review will conclude with the discussion of the new experimental fission facilities which are presently being brought into operation, along with promising 'next-generation' fission approaches, which might become available within the next decade
    corecore