780 research outputs found

    New ultrarapid-scanning interferometer for FT-IR spectroscopy with microsecond time-resolution

    Get PDF
    A novel Fourier-transform infrared (FT-IR) rapid-scan spectrometer has been developed (patent pending EP14194520.4) which yields 1000 times higher time resolution as compared to conventional rapid-scanning spectrometers. The central element to achieve faster scanning rates is based on a sonotrode whose front face represents the movable mirror of the interferometer. A prototype spectrometer with a time resolution of 13 μs was realized, capable of fully automated long-term measurements with a flow cell for liquid samples, here a photosynthetic membrane protein in solution. The performance of this novel spectrometer is demonstrated by recording the photoreaction of bacteriorhodopsin initiated by a short laser pulse that is synchronized to the data recording. The resulting data are critically compared to those obtained by step-scan spectroscopy and demonstrate the relevance of performing experiments on proteins in solution. The spectrometer allows for future investigations of fast, non-repetitive processes, whose investigation is challenging to step-scan FT-IR spectroscopy

    Calculation of coercivity of magnetic nanostructures at finite temperatures

    Full text link
    We report a finite temperature micromagnetic method (FTM) that allows for the calculation of the coercive field of arbitrary shaped magnetic nanostructures at time scales of nanoseconds to years. Instead of directly solving the Landau-Lifshitz-Gilbert equation, the coercive field is obtained without any free parameter by solving a non linear equation, which arises from the transition state theory. The method is applicable to magnetic structures where coercivity is determined by one thermally activated reversal or nucleation process. The method shows excellent agreement with experimentally obtained coercive fields of magnetic nanostructures and provides a deeper understanding of the mechanism of coercivity.Comment: submitted to Phys. Rev.

    On reflection of Alfven waves in the solar wind

    Get PDF
    We have revisited the problem of propagation of toroidal and linear Alfven waves formulated by Heinemann and Olbert (1980) to compare WKB and non-WKB waves and their effects on the solar wind. They considered two solar wind models and showed that reflection is important for Alfven waves with periods of the order of one day and longer, and that non-WKB Alfven waves are no more effective in accelerating the solar wind than WKB waves. There are several recently published papers which seem to indicate that Alfven waves with periods of the order of several minutes should be treated as non-WKB waves and that these non-WKB waves exert a stronger acceleration force than WKB waves. The purpose of this paper is to study the origin of these discrepancies by performing parametric studies of the behavior of the waves under a variety of different conditions. In addition, we want to investigate two problems that have not been addressed by Heinemann and Olbert, namely, calculate the efficiency of Alfven wave reflection by using the reflection coefficient and identify the region of strongest wave reflection in different wind models. To achieve these goals, we investigated the influence of temperature, electron density distribution, wind velocity and magnetic field strength on the waves. The obtained results clearly demonstrate that Alfven wave reflection is strongly model dependent and that the strongest reflection can be expected in models with the base temperatures higher than 10(exp 6) K and with the base densities lower than 7 x 10(exp 7) cm(exp -3). In these models as well as in the models with lower temperatures and higher densities, Alfven waves with periods as short as several minutes have negligible reflection so that they can be treated as WKB waves; however, for Alfven waves with periods of the order of one hour or longer reflection is significant, requiring a non-WKB treatment. We also show that non-WKB, linear Alfven waves are always less effective in accelerating the plasma than WKB Alfven waves. Finally, it is evident from our results that the region of strongest wave reflection is usually located at the base of the models, and hence that interpretation of wave reflection based solely on the reflection coefficient can be misleading

    Internal effective field sources for spin torque nano pillar oscillators

    Full text link
    In this paper we numerically conduct micromagnetic modelling with an expended micromagnetic model that includes the spin torque term and an impedance model to investigate methods to replace external field sources with internal ones and to investigate its tuneability on nanopillar geometries. We present results for three methods: interlayer coupling, large perpendicular anisotropy and magnetostatic coupling. The internal field sources are evaluated as function of frequency shift with current, its dependency on temperature and are tested against analytical predictions.Comment: 27 pages, 11 figures, submitted to Journal of Applied Physic

    Morphology, dynamics and plasma parameters of plumes and inter-plume regions in solar coronal holes

    Full text link
    Coronal plumes, which extend from solar coronal holes (CH) into the high corona and - possibly - into the solar wind (SW), can now continuously be studied with modern telescopes and spectrometers on spacecraft, in addition to investigations from the ground, in particular, during total eclipses. Despite the large amount of data available on these prominent features and related phenomena, many questions remained unanswered as to their generation and relative contributions to the high-speed streams emanating from CHs. An understanding of the processes of plume formation and evolution requires a better knowledge of the physical conditions at the base of CHs, in plumes and in the surrounding inter-plume regions (IPR). More specifically, information is needed on the magnetic field configuration, the electron densities and temperatures, effective ion temperatures, non-thermal motions, plume cross-sections relative to the size of a CH, the plasma bulk speeds, as well as any plume signatures in the SW. In spring 2007, the authors proposed a study on "Structure and dynamics of coronal plumes and inter-plume regions in solar coronal holes" to the International Space Science Institute (ISSI) in Bern to clarify some of these aspects by considering relevant observations and the extensive literature. This review summarizes the results and conclusions of the study. Stereoscopic observations allowed us to include three-dimensional reconstructions of plumes. Multi-instrument investigations carried out during several campaigns led to progress in some areas, such as plasma densities, temperatures, plume structure and the relation to other solar phenomena, but not all questions could be answered concerning the details of plume generation process(es) and interaction with the SW.Comment: To appear on: The Astronomy and Astrophysics Review. 72 pages, 30 figure
    • …
    corecore