2,451 research outputs found
Rough analysis of installation effects on turboprop noise
A rough analysis of noise from a propeller operated at angle of attack, and in the nonuniform flow due to a line vortex approximating a wing flow field suggests installation can significantly affect turboprop noise levels. On one side of the propeller, where the blades approach the horizontal plane from above, decreases of noise occur; while on the other side noise increases. The noise reduction is due to negative interference of steady and unsteady sources. An angle of attack, or distance between propeller and vortex, exists for which noise is a minimum
Parameter estimation in pair hidden Markov models
This paper deals with parameter estimation in pair hidden Markov models
(pair-HMMs). We first provide a rigorous formalism for these models and discuss
possible definitions of likelihoods. The model being biologically motivated,
some restrictions with respect to the full parameter space naturally occur.
Existence of two different Information divergence rates is established and
divergence property (namely positivity at values different from the true one)
is shown under additional assumptions. This yields consistency for the
parameter in parametrization schemes for which the divergence property holds.
Simulations illustrate different cases which are not covered by our results.Comment: corrected typo
Opto-optical modulation in N-(p-methoxybenzylidene)-p-butylaniline
A method of opto-optical modulation in liquid crystals is reported. An Ar+-laser beam is employed to modulate a second He–Ne laser. The highest frequency achieved was 1.5 × 103 pulses per second with input modulating powers smaller than 10 mW. A homeotropic N-(p-methoxybenzylidene)-p-butylaniline liquid-crystal cell was employed as the nonlinear medium
A Solvable Sequence Evolution Model and Genomic Correlations
We study a minimal model for genome evolution whose elementary processes are
single site mutation, duplication and deletion of sequence regions and
insertion of random segments. These processes are found to generate long-range
correlations in the composition of letters as long as the sequence length is
growing, i.e., the combined rates of duplications and insertions are higher
than the deletion rate. For constant sequence length, on the other hand, all
initial correlations decay exponentially. These results are obtained
analytically and by simulations. They are compared with the long-range
correlations observed in genomic DNA, and the implications for genome evolution
are discussed.Comment: 4 pages, 4 figure
Dual-band infrared imaging applications: locating buried minefields, mapping sea ice and inspecting aging aircraft
We discuss the use of dual-band infrared (DBIR) imaging for three quantitative NDE applications: locating buried surrogate mines, mapping sea ice thicknesses and inspecting subsurface flaws in aging aircraft parts. Our system of DBIR imaging offers a unique combination of thermal resolution, detectability, and interpretability. Pioneered at Lawrence Livermore Laboratory, it resolves 0.2 °C differences in surface temperatures needed to identify buried mine sites and distinguish them from surface features. It produces both surface temperature and emissivity-ratio images of sea ice, needed to accurately map ice thicknesses (e.g., by first removing clutter due to snow and surface roughness effects). The DBIR imaging technique depicts subsurface flaws in composite patches and lap joints of aircraft, thus providing a needed tool for aging aircraft inspections
Recommended from our members
Deducing signaling pathways from parallel actions of arsenite and antimonite in human epidermal keratinocytes.
Inorganic arsenic oxides have been identified as carcinogens in several human tissues, including epidermis. Due to the chemical similarity between trivalent inorganic arsenic (arsenite) and antimony (antimonite), we hypothesized that common intracellular targets lead to similarities in cellular responses. Indeed, transcriptional and proteomic profiling revealed remarkable similarities in differentially expressed genes and proteins resulting from exposure of cultured human epidermal keratinocytes to arsenite and antimonite in contrast to comparisons of arsenite with other metal compounds. These data were analyzed to predict upstream regulators and affected signaling pathways following arsenite and antimonite treatments. A majority of the top findings in each category were identical after treatment with either compound. Inspection of the predicted upstream regulators led to previously unsuspected roles for oncostatin M, corticosteroids and ephrins in mediating cellular response. The influence of these predicted mediators was then experimentally verified. Together with predictions of transcription factor effects more generally, the analysis has led to model signaling networks largely accounting for arsenite and antimonite action. The striking parallels between responses to arsenite and antimonite indicate the skin carcinogenic risk of exposure to antimonite merits close scrutiny
Simulated Dynamical Weakening and Abelian Avalanches in Mean-Field Driven Threshold Models
Mean-field coupled lattice maps are used to approximate the physics of driven
threshold systems with long range interactions. However, they are incapable of
modeling specific features of the dynamic instability responsible for
generating avalanches. Here we present a method of simulating specific
frictional weakening effects in a mean field slider block model. This provides
a means of exploring dynamical effects previously inaccessible to discrete time
simulations. This formulation also results in Abelian avalanches, where rupture
propagation is independent of the failure sequence. The resulting event size
distribution is shown to be generated by the boundary crossings of a stochastic
process. This is applied to typical models to explain some commonly observed
features.Comment: 27 pages, 9 figure
X-ray photoemission spectroscopy determination of the InN/yttria stabilized cubic-zirconia valence band offset
The valence band offset of wurtzite InN(0001)/yttria stabilized cubic-zirconia (YSZ)(111) heterojunctions is determined by x-ray photoemission spectroscopy to be 1.19±0.17 eV giving a conduction band offset of 3.06±0.20 eV. Consequently, a type-I heterojunction forms between InN and YSZ in the straddling arrangement. The low lattice mismatch and high band offsets suggest potential for use of YSZ as a gate dielectric in high-frequency InN-based electronic devices
Polarization rotation via a monoclinic phase in the piezoelectric 92%PbZn1/3Nb2/3O3-8%PbTiO3
The origin of ultrahigh piezoelectricity in the relaxor ferroelectric
PbZn1/3Nb2/3O3-PbTiO3 was studied with an electric field applied along the
[001] direction. The zero-field rhombohedral R phase starts to follow the
direct polarization path to tetragonal symmetry via an intermediate monoclinic
M phase, but then jumps irreversibly to an alternate path involving a different
type of monoclinic distortion. Details of the structure and domain
configuration of this novel phase are described. This result suggests that
there is a nearby R-M phase boundary as found in the Pb(Ti,Zr)O3 system.Comment: REVTeX file. 4 pages. New version after referees' comment
- …