75 research outputs found

    The increase in hydric volume is associated to contractile impairment in the calf after the world's most extreme mountain ultra-marathon.

    Get PDF
    BACKGROUND: Studies have recently focused on the effect of running a mountain ultra-marathon (MUM) and their results show muscular inflammation, damage and force loss. However, the link between peripheral oedema and muscle force loss is not really established. We tested the hypothesis that, after a MUM, lower leg muscles' swelling could be associated with muscle force loss. The knee extensor (KE) and the plantar flexor (PF) muscles' contractile function was measured by supramaximal electrical stimulations, potentiated low- and high-frequency doublets (PS10 and PS100) of the KE and the PF were measured by transcutaneous electrical nerve stimulation and bioimpedance was used to assess body composition in the runners (n = 11) before (Pre) and after (Post) the MUM and compared with the controls (n = 8). RESULTS: The maximal voluntary contraction of the KE and the PF significantly decreased by 20 % Post-MUM in the runners. Hydration of the non-fat mass (NF-Hyd) and extracellular water volume (Ve) were increased by 12 % Post-MUM (p < 0.001) in the runners. Calf circumference (+2 %, p < 0.05) was also increased. Significant relationships were found for percentage increases in Ve and NF-Hyd with percentage decrease in PS10 of the PF (r = -0.68 and r = -0.70, p < 0.05) and with percentage increase of calf circumference (r = 0.72 and r = 0.73, p < 0.05) in the runners. CONCLUSIONS: The present study suggests that increases in circumference and in hydric volume are associated to contractile impairment in the calf in ultra-marathon runners

    Hamstring Architectural and Functional Adaptations Following Long vs. Short Muscle Length Eccentric Training.

    Get PDF
    Most common preventive eccentric-based exercises, such as Nordic hamstring do not include any hip flexion. So, the elongation stress reached is lower than during the late swing phase of sprinting. The aim of this study was to assess the evolution of hamstring architectural (fascicle length and pennation angle) and functional (concentric and eccentric optimum angles and concentric and eccentric peak torques) parameters following a 3-week eccentric resistance program performed at long (LML) vs. short muscle length (SML). Both groups performed eight sessions of 3-5 × 8 slow maximal eccentric knee extensions on an isokinetic dynamometer: the SML group at 0° and the LML group at 80° of hip flexion. Architectural parameters were measured using ultrasound imaging and functional parameters using the isokinetic dynamometer. The fascicle length increased by 4.9% (p < 0.01, medium effect size) in the SML and by 9.3% (p < 0.001, large effect size) in the LML group. The pennation angle did not change (p = 0.83) in the SML and tended to decrease by 0.7° (p = 0.09, small effect size) in the LML group. The concentric optimum angle tended to decrease by 8.8° (p = 0.09, medium effect size) in the SML and by 17.3° (p < 0.01, large effect size) in the LML group. The eccentric optimum angle did not change (p = 0.19, small effect size) in the SML and tended to decrease by 10.7° (p = 0.06, medium effect size) in the LML group. The concentric peak torque did not change in the SML (p = 0.37) and the LML (p = 0.23) groups, whereas eccentric peak torque increased by 12.9% (p < 0.01, small effect size) and 17.9% (p < 0.001, small effect size) in the SML and the LML group, respectively. No group-by-time interaction was found for any parameters. A correlation was found between the training-induced change in fascicle length and the change in concentric optimum angle (r = -0.57, p < 0.01). These results suggest that performing eccentric exercises lead to several architectural and functional adaptations. However, further investigations are required to confirm the hypothesis that performing eccentric exercises at LML may lead to greater adaptations than a similar training performed at SML

    Alterations of Neuromuscular Function after the World's Most Challenging Mountain Ultra-Marathon.

    Get PDF
    We investigated the physiological consequences of the most challenging mountain ultra-marathon (MUM) in the world: a 330-km trail run with 24000 m of positive and negative elevation change. Neuromuscular fatigue (NMF) was assessed before (Pre-), during (Mid-) and after (Post-) the MUM in experienced ultra-marathon runners (n = 15; finish time  = 122.43 hours ±17.21 hours) and in Pre- and Post- in a control group with a similar level of sleep deprivation (n = 8). Blood markers of muscle inflammation and damage were analyzed at Pre- and Post-. Mean ± SD maximal voluntary contraction force declined significantly at Mid- (-13±17% and -10±16%, P<0.05 for knee extensor, KE, and plantar flexor muscles, PF, respectively), and further decreased at Post- (-24±13% and -26±19%, P<0.01) with alteration of the central activation ratio (-24±24% and -28±34% between Pre- and Post-, P<0.05) in runners whereas these parameters did not change in the control group. Peripheral NMF markers such as 100 Hz doublet (KE: -18±18% and PF: -20±15%, P<0.01) and peak twitch (KE: -33±12%, P<0.001 and PF: -19±14%, P<0.01) were also altered in runners but not in controls. Post-MUM blood concentrations of creatine kinase (3719±3045 Ul·(1)), lactate dehydrogenase (1145±511 UI·L(-1)), C-Reactive Protein (13.1±7.5 mg·L(-1)) and myoglobin (449.3±338.2 µg·L(-1)) were higher (P<0.001) than at Pre- in runners but not in controls. Our findings revealed less neuromuscular fatigue, muscle damage and inflammation than in shorter MUMs. In conclusion, paradoxically, such extreme exercise seems to induce a relative muscle preservation process due likely to a protective anticipatory pacing strategy during the first half of MUM and sleep deprivation in the second half

    Alterations of neuromuscular function after the world's most challenging mountain ultra-marathon

    Get PDF
    We investigated the physiological consequences of the most challenging mountain ultra-marathon (MUM) in the world: a 330-km trail run with 24000 m of positive and negative elevation change. Neuromuscular fatigue (NMF) was assessed before (Pre-), during (Mid-) and after (Post-) the MUM in experienced ultra-marathon runners (n = 15; finish time = 122.43 hours \ub117.21 hours) and in Pre- and Post- in a control group with a similar level of sleep deprivation (n = 8). Blood markers of muscle inflammation and damage were analyzed at Pre- and Post-. Mean \ub1 SD maximal voluntary contraction force declined significantly at Mid- ( 1213\ub117% and 1210\ub116%, P<0.05 for knee extensor, KE, and plantar flexor muscles, PF, respectively), and further decreased at Post- ( 1224\ub113% and 1226\ub119%, P<0.01) with alteration of the central activation ratio ( 1224\ub124% and 1228\ub134% between Pre- and Post-, P<0.05) in runners whereas these parameters did not change in the control group. Peripheral NMF markers such as 100 Hz doublet (KE: 1218\ub118% and PF: 1220\ub115%, P<0.01) and peak twitch (KE: 1233\ub112%, P<0.001 and PF: 1219\ub114%, P<0.01) were also altered in runners but not in controls. Post-MUM blood concentrations of creatine kinase (3719\ub13045 Ul\ub71), lactate dehydrogenase (1145\ub1511 UI\ub7L 121), C-Reactive Protein (13.1\ub17.5 mg\ub7L 121) and myoglobin (449.3\ub1338.2 \ub5g\ub7L 121) were higher (P<0.001) than at Pre- in runners but not in controls. Our findings revealed less neuromuscular fatigue, muscle damage and inflammation than in shorter MUMs. In conclusion, paradoxically, such extreme exercise seems to induce a relative muscle preservation process due likely to a protective anticipatory pacing strategy during the first half of MUM and sleep deprivation in the second half

    The physiological effects of hypobaric hypoxia versus normobaric hypoxia: a systematic review of crossover trials

    Get PDF
    Much hypoxia research has been carried out at high altitude in a hypobaric hypoxia (HH) environment. Many research teams seek to replicate high-altitude conditions at lower altitudes in either hypobaric hypoxic conditions or normobaric hypoxic (NH) laboratories. Implicit in this approach is the assumption that the only relevant condition that differs between these settings is the partial pressure of oxygen (PO2), which is commonly presumed to be the principal physiological stimulus to adaptation at high altitude. This systematic review is the first to present an overview of the current available literature regarding crossover studies relating to the different effects of HH and NH on human physiology. After applying our inclusion and exclusion criteria, 13 studies were deemed eligible for inclusion. Several studies reported a number of variables (e.g. minute ventilation and NO levels) that were different between the two conditions, lending support to the notion that true physiological difference is indeed present. However, the presence of confounding factors such as time spent in hypoxia, temperature, and humidity, and the limited statistical power due to small sample sizes, limit the conclusions that can be drawn from these findings. Standardisation of the study methods and reporting may aid interpretation of future studies and thereby improve the quality of data in this area. This is important to improve the quality of data that is used for improving the understanding of hypoxia tolerance, both at altitude and in the clinical setting

    Changes in balance and joint position sense during a 12-day high altitude trek: The British Services Dhaulagiri medical research expedition

    Get PDF
    <div><p>Postural control and joint position sense are essential for safely undertaking leisure and professional activities, particularly at high altitude. We tested whether exposure to a 12-day trek with a gradual ascent to high altitude impairs postural control and joint position sense. This was a repeated measures observational study of 12 military service personnel (28±4 years). Postural control (sway velocity measured by a portable force platform) during standing balance, a Sharpened Romberg Test and knee joint position sense were measured, in England (113m elevation) and at 3 research camps (3619m, 4600m and 5140m) on a 12-day high altitude trek in the Dhaulagiri region of Nepal. Pulse oximetry, and Lake Louise scores were also recorded on the morning and evening of each trek day. Data were compared between altitudes and relationships between pulse oximetry, Lake Louise score, and sway velocity were explored. Total sway velocity during standing balance with eyes open (p = 0.003, d = 1.9) and during Sharpened Romberg test with eyes open (p = 0.007, d = 1.6) was significantly greater at altitudes of 3619m and 5140m when compared with sea level. Anterior-posterior sway velocity during standing balance with eyes open was also significantly greater at altitudes of 3619m and 5140m when compared with sea level (p = 0.001, d = 1.9). Knee joint position sense was not altered at higher altitudes. There were no significant correlations between Lake Louise scores, pulse oximetry and postural sway. Despite a gradual ascent profile, exposure to 3619 m was associated with impairments in postural control without impairment in knee joint position sense. Importantly, these impairments did not worsen at higher altitudes of 4600 m or 5140 m. The present findings should be considered during future trekking expeditions when developing training strategies targeted to manage impairments in postural control that occur with increasing altitude.</p></div

    Impaired neuromuscular function and postural control after a fatiguing exercise performed with the plantar flexor muscles

    Get PDF
    PurposePostural control of undisturbed standing is known to be centrally regulated. There are also evidences that postural control is impaired with muscle fatigue, i.e. a reduction in stability is usually observed after prolonged or repeated exercise. However, there is little information available about the origin of impaired postural control with muscle fatigue. The aim of the present study was to determine the extent and origin of postural control impairment after a fatiguing exercise performed with the plantar flexors (PF).MethodsTen healthy men (26±3 years) reported to the laboratory for two experimental sessions, performed on separate days in a randomized order. Both sessions consisted in a fatiguing exercise at the PF level (6 series of concentric-eccentric upright PF contractions, 30s each, 90s recovery). Neuromuscular fatigue (respectively postural stability) was quantified before and immediately after exercise in one session, whereas postural stability was assessed during quiet standing on a force plate at similar time points in the other experimental session. Neuromuscular alterations were assessed via techniques combining voluntary contractions, transcutaneous tibial nerve electrical stimulations and surface EMG activity recordings from soleus, gastrocnemius lateralis and gastrocnemius medialis muscles.ResultsA progressive reduction in PF maximal voluntary force (MVC: –25±18%, P<0.05) was measured, together with a reduced maximal voluntary activation level (VAL: –14±18%, P<0.05). A reduction in the doublet force at 10Hz/doublet force at 100Hz ratio (P10/P100 ratio: –13±6%, P<0.05) was also observed, whereas M-wave properties were well preserved. Various indexes of postural control were altered, such as an increased stabilogram surface (+141±136%, P<0.05). A linear relationship was found between the extent of MVC force loss and the reduction in VAL (r=0.87, P<0.05), but no correlation was found between the loss in VAL and the change in postural control measurements.ConclusionAlthough muscle fatigue, as reflected by PF MVC force loss, appears to be of central origin, it seems that other mechanisms, presumably peripheral, explain the alteration of posture in quiet upright stance after exercise
    corecore