703 research outputs found

    Switched Control of Electron Nuclear Spin Systems

    Full text link
    In this article, we study control of electron-nuclear spin dynamics at magnetic field strengths where the Larmor frequency of the nucleus is comparable to the hyperfine coupling strength. The quantization axis for the nuclear spin differs from the static B_0 field direction and depends on the state of the electron spin. The quantization axis can be switched by flipping the state of electron spin, allowing for universal control on nuclear spin states. We show that by performing a sequence of flips (each followed by a suitable delay), we can perform any desired rotation on the nuclear spins, which can also be conditioned on the state of the electron spin. These operations, combined with electron spin rotations can be used to synthesize any unitary transformation on the coupled electron-nuclear spin system. We discuss how these methods can be used for design of experiments for transfer of polarization from the electron to the nuclear spins

    Quantitative analysis of pedestrian counterflow in a cellular automaton model

    Full text link
    Pedestrian dynamics exhibits various collective phenomena. Here we study bidirectional pedestrian flow in a floor field cellular automaton model. Under certain conditions, lane formation is observed. Although it has often been studied qualitatively, e.g., as a test for the realism of a model, there are almost no quantitative results, neither empirically nor theoretically. As basis for a quantitative analysis we introduce an order parameter which is adopted from the analysis of colloidal suspensions. This allows to determine a phase diagram for the system where four different states (free flow, disorder, lanes, gridlock) can be distinguished. Although the number of lanes formed is fluctuating, lanes are characterized by a typical density. It is found that the basic floor field model overestimates the tendency towards a gridlock compared to experimental bounds. Therefore an anticipation mechanism is introduced which reduces the jamming probability.Comment: 11 pages, 12 figures, accepted for publication in Phys. Rev.

    Astrophysical S_{17}(0) factor from a measurement of d(7Be,8B)n reaction at E_{c.m.} = 4.5 MeV

    Full text link
    Angular distribution measurements of 2^2H(7^7Be,7^7Be)2^2H and 2^2H(7^7Be,8^8B)nn reactions at Ec.m.E_{c.m.}\sim~4.5 MeV were performed to extract the astrophysical S17(0)S_{17}(0) factor using the asymptotic normalization coefficient (ANC) method. For this purpose a pure, low emittance 7^7Be beam was separated from the primary 7^7Li beam by a recoil mass spectrometer operated in a novel mode. A beam stopper at 0^{\circ} allowed the use of a higher 7^7Be beam intensity. Measurement of the elastic scattering in the entrance channel using kinematic coincidence, facilitated the determination of the optical model parameters needed for the analysis of the transfer data. The present measurement significantly reduces errors in the extracted 7^7Be(p,γ\gamma) cross section using the ANC method. We get S17S_{17}~(0)~=~20.7~±\pm~2.4 eV~b.Comment: 15 pages including 3 eps figures, one figure removed and discussions updated. Version to appear in Physical Review

    New pathway to bypass the 15O waiting point

    Full text link
    We propose the sequential reaction process 15^{15}O(pp,γ)(β+\gamma)(\beta^{+})16^{16}O as a new pathway to bypass of the 15^{15}O waiting point. This exotic reaction is found to have a surprisingly high cross section, approximately 1010^{10} times higher than the 15^{15}O(pp,β+\beta^{+})16^{16}O. These cross sections were calculated after precise measurements of energies and widths of the proton-unbound 16^{16}F low lying states, obtained using the H(15^{15}O,p)15^{15}O reaction. The large (p,γ)(β+)(p,\gamma)(\beta^{+}) cross section can be understood to arise from the more efficient feeding of the low energy wing of the ground state resonance by the gamma decay. The implications of the new reaction in novae explosions and X-ray bursts are discussed.Comment: submitte

    Elastic scattering and breakup of 17^F at 10 MeV/nucleon

    Full text link
    Angular distributions of fluorine and oxygen produced from 170 MeV 17^F incident on 208^Pb were measured. The elastic scattering data are in good agreement with optical model calculations using a double-folding potential and parameters similar to those obtained from 16^O+208^Pb. A large yield of oxygen was observed near \theta_lab=36 deg. It is reproduced fairly well by a calculation of the (17^F,16^O) breakup, which is dominated by one-proton stripping reactions. The discrepancy between our previous coincidence measurement and theoretical predictions was resolved by including core absorption in the present calculation.Comment: 9 pages, 5 figure

    Initial State Dependence of the Breakup of Weakly Bound Carbon Isotopes

    Get PDF
    The one-neutron nuclear breakup from the Carbon isotopes 19^{19}C and 17^{17}C, is calculated as an example of application of the theory of transfer to the continuum reactions in the formulation which includes spin coupling. The effect of the energy sharing between the parallel and transverse neutron momentum distributions is taken into account thus resulting in a theory which is more general than sudden eikonal approaches. Both effects are necessary to understand properly the breakup from not too weakly bound li>1l_i>1 orbitals. Breakup which leaves the core into an excited state below particle threshold is also considered. The core-target interaction is treated in the smooth cut-off approximation. By comparing to presently available experimental data we show how to make some hypothesis on the quantum numbers and occupancy of the neutron initial state. Possible ambiguities in the interpretation of inclusive cross sections are discussed.Comment: 22 RevTeX pages,3 ps figures. Phys. Rev. C, accepte

    Enhanced empirical data for the fundamental diagram and the flow through bottlenecks

    Full text link
    In recent years, several approaches for modelling pedestrian dynamics have been proposed and applied e.g. for design of egress routes. However, so far not much attention has been paid to their 'quantitative' validation. This unsatisfactory situation belongs amongst others on the uncertain and contradictory experimental data base. The fundamental diagram, i.e. the density-dependence of the flow or velocity, is probably the most important relation as it connects the basic parameter to describe the dynamic of crowds. But specifications in different handbooks as well as experimental measurements differ considerably. The same is true for the bottleneck flow. After a comprehensive review of the experimental data base we give an survey of a research project, including experiments with up to 250 persons performed under well controlled laboratory conditions. The trajectories of each person are measured in high precision to analyze the fundamental diagram and the flow through bottlenecks. The trajectories allow to study how the way of measurement influences the resulting relations. Surprisingly we found large deviation amongst the methods. These may be responsible for the deviation in the literature mentioned above. The results are of particular importance for the comparison of experimental data gained in different contexts and for the validation of models.Comment: A contribution to: Pedestrian and Evacuation Dynamics 2008 (Springer) 12 pages, 7 figure

    Nuclear structure and reaction studies at SPIRAL

    Get PDF
    The SPIRAL facility at GANIL, operational since 2001, is described briefly. The diverse physics program using the re-accelerated (1.2 to 25 MeV/u) beams ranging from He to Kr and the instrumentation specially developed for their exploitation are presented. Results of these studies, using both direct and compound processes, addressing various questions related to the existence of exotic states of nuclear matter, evolution of new "magic numbers", tunnelling of exotic nuclei, neutron correlations, exotic pathways in astrophysical sites and characterization of the continuum are discussed. The future prospects for the facility and the path towards SPIRAL2, a next generation ISOL facility, are also briefly presented.Comment: 48 pages, 27 figures. Accepted for publication in Journal of Physics

    alpha-particle production in the scattering of 6He by 208Pb at energies around the Coulomb barrier

    Full text link
    New experimental data from the scattering of 6He+208Pb at energies around and below the Coulomb barrier are presented. The yield of breakup products coming from projectile fragmentation is dominated by a strong group of α\alpha particles. The energy and angular distributions of this group have been analyzed and compared with theoretical calculations. This analysis indicates that the α\alpha particles emitted at backward angles in this reaction are mainly due to two-neutron transfer to weakly bound states of the final nucleus.Comment: 20 pages, 5 figures. Nuclear Physics A792 (2007) 2-1
    corecore