The one-neutron nuclear breakup from the Carbon isotopes 19C and
17C, is calculated as an example of application of the theory of transfer
to the continuum reactions in the formulation which includes spin coupling.
The effect of the energy sharing between the parallel and transverse neutron
momentum distributions is taken into account thus resulting in a theory which
is more general than sudden eikonal approaches. Both effects are necessary to
understand properly the breakup from not too weakly bound li>1 orbitals.
Breakup which leaves the core into an excited state below particle threshold is
also considered. The core-target interaction is treated in the smooth cut-off
approximation. By comparing to presently available experimental data we show
how to make some hypothesis on the quantum numbers and occupancy of the neutron
initial state. Possible ambiguities in the interpretation of inclusive cross
sections are discussed.Comment: 22 RevTeX pages,3 ps figures. Phys. Rev. C, accepte