444 research outputs found

    Resolving Molecular Line Emission from Protoplanetary Disks: Observational Prospects for Disks Irradiated by Infalling Envelopes

    Get PDF
    Molecular line observations that could resolve protoplanetary disks of ~100 AU both spatially and kinematically would be a useful tool to unambiguously identify these disks and to determine their kinematical and physical characteristics. In this work we model the expected line emission from a protoplanetary disk irradiated by an infalling envelope, addressing the question of its detectability with subarcsecond resolution. We adopt a previously determined disk model structure that gives a continuum spectral energy distribution and a mm intensity spatial distribution that are consistent with observational constraints of HL Tau. An analysis of the capability of presently working and projected interferometers at mm and submm wavelengths shows that molecular transitions of moderate opacity at these wavelengths (e.g., C17O lines) are good candidates for detecting disk lines at subarcsecond resolution in the near future. We suggest that, in general, disks of typical Class I sources will be detectable.Comment: 41 pages, 16 figures. To be published in The Astrophysical Journa

    A Keplerian Disk around the Herbig Ae star HD169142

    Full text link
    We present Submillimeter Array observations of the Herbig Ae star HD169142 in 1.3 millimeter continuum emission and 12CO J=2-1 line emission at 1.5 arcsecond resolution that reveal a circumstellar disk. The continuum emission is centered on the star position and resolved, and provides a mass estimate of about 0.02 solar masses for the disk. The CO images show patterns in position and velocity that are well matched by a disk in Keplerian rotation with low inclination to the line-of-sight. We use radiative transfer calculations based on a flared, passive disk model to constrain the disk parameters by comparison to the spectral line emission. The derived disk radius is 235 AU, and the inclination is 13 degrees. The model also necessitates modest depletion of the CO molecules, similar to that found in Keplerian disks around T Tauri stars.Comment: 10 pages, 2 figures, accepted by A

    The effect of the regular solution model in the condensation of protoplanetary dust

    Full text link
    We utilize a chemical equilibrium code in order to study the condensation process which occurs in protoplanetary discs during the formation of the first solids. The model specifically focuses on the thermodynamic behaviour on the solid species assuming the regular solution model. For each solution, we establish the relationship between the activity of the species, the composition and the temperature using experimental data from the literature. We then apply the Gibbs free energy minimization method and study the resulting condensation sequence for a range of temperatures and pressures within a protoplanetary disc. Our results using the regular solution model show that grains condense over a large temperature range and therefore throughout a large portion of the disc. In the high temperature region (T > 1400 K) Ca-Al compounds dominate and the formation of corundum is sensitive to the pressure. The mid-temperature region is dominated by Fe(s) and silicates such as Mg2SiO4 and MgSiO3 . The chemistry of forsterite and enstatite are strictly related, and our simulations show a sequence of forsterite-enstatite-forsterite with decreasing temperature. In the low temperature regions (T < 600 K) a range of iron compounds and sulfides form. We also run simulations using the ideal solution model and see clear differences in the resulting condensation sequences with changing solution model In particular, we find that the turning point in which forsterite replaces enstatite in the low temperature region is sensitive to the solution model. Our results show that the ideal solution model is often a poor approximation to experimental data at most temperatures important in protoplanetary discs. We find some important differences in the resulting condensation sequences when using the regular solution model, and suggest that this model should provide a more realistic condensation sequence.Comment: MNRAS: Accepted 2011 February 16. Received 2011 February 14; in original form 2010 July 2

    Involvement of phosphodiesterase-cGMP-PKG pathway in intracellular Ca2+ oscillations in pituitary GH3 cells

    Get PDF
    AbstractThe present study investigates the potential role of the Ca2+-calmodulin-dependent type I phosphodiesterase (PDE)-cGMP-protein kinase G (PKG) pathway in spontaneous [Ca2+]i oscillations in GH3 cells using fura-2 single cell videoimaging. Vinpocetine (2.5–50 μM), a selective inhibitor of type I PDE, induced a concentration-dependent inhibition of spontaneous [Ca2+]i oscillations in these pituitary cells, and at the same time produced an increase of the intracellular cGMP content. The cell permeable cGMP analog N2,2′-O-dibutyryl-cGMP (dB-cGMP) (1 mM) caused a progressive reduction of the frequency and the amplitude of spontaneous [Ca2+]i oscillations when added to the medium. KT5823 (400 nM), a selective inhibitor of cGMP-dependent protein kinase (PKG), produced an increase of baseline [Ca2+]i and the disappearance of spontaneous [Ca2+]i oscillations. When KT5823 was added before vinpocetine, the PKG inhibitor counteracted the [Ca2+]i lowering effect of the cGMP catabolism inhibitor. Finally, the removal of extracellular Ca2+ or the blockade of L-type voltage-sensitive calcium channels (VSCC) by nimodipine produced a decrease of cytosolic cGMP levels. Collectively, the results of the present study suggest that spontaneous [Ca2+]i oscillations in GH3 cells may be regulated by the activity of type I PDE-cGMP-PKG pathway

    Confirmation of a recent bipolar ejection in the very young hierarchical multiple system IRAS 16293-2422

    Full text link
    We present and analyze two new high-resolution (approx 0.3 arcsec), high-sensitivity (approx 50 uJy beam-1) Very Large Array 3.6 cm observations of IRAS 16293-2422 obtained in 2007 August and 2008 December. The components A2alpha and A2beta recently detected in this system are still present, and have moved roughly symmetrically away from source A2 at a projected velocity of 30-80 km s-1. This confirms that A2alpha and A2beta were formed as a consequence of a very recent bipolar ejection from A2. Powerful bipolar ejections have long been known to occur in low-mass young stars, but this is -to our knowledge-- the first time that such a dramatic one is observed from its very beginning. Under the reasonable assumption that the flux detected at radio wavelengths is optically thin free-free emission, one can estimate the mass of each ejecta to be of the order of 10^-8 Msun. If the ejecta were created as a consequence of an episode of enhanced mass loss accompanied by an increase in accretion onto the protostar, then the total luminosity of IRAS 16293-2422 ought to have increased by 10-60% over the course of at least several months. Between A2alpha and A2beta, component A2 has reappeared, and the relative position angle between A2 and A1 is found to have increased significantly since 2003-2005. This strongly suggests that A1 is a protostar rather than a shock feature, and that the A1/A2 pair is a tight binary system. Including component B, IRAS 16293-2422 therefore appears to be a very young hierarchical multiple system.Comment: Accepted for publication in The Astrophysical Journa

    Spitzer Space Telescope study of disks in the young σ\sigma Orionis cluster

    Full text link
    We report new Spitzer Space Telescope observations from the IRAC and MIPS instruments of the young (~ 3 Myr) sigma Orionis cluster. We identify 336 stars as members of the cluster using optical and near-infrared color magnitude diagrams. Using the spectral energy distribution (SED) slopes in the IRAC spectral range, we place objects in several classes: non-excess stars, stars with optically thick disks(like classical T Tauri stars), class I (protostellar) candidates, and stars with ``evolved disks''; the last exhibit smaller IRAC excesses than optically thick disk systems. In general, this classification agrees with the location expected in IRAC-MIPS color-color diagrams for these objects. We find that the evolved disk systems are mostly a combination of objects with optically thick but non-flared disks, suggesting grain growth and/or settling, and transition disks, systems in which the inner disk is partially or fully cleared of small dust. In all, we identify 7 transition disk candidates and 3 possible debris disk systems. As in other young stellar populations, the fraction of disks depends on the stellar mass, ranging from ~10% for stars in the Herbig Ae/Be mass range (>2 msun) to ~35% in the T Tauri mass range (1-0.1 msun). We find that the disk fraction does not decrease significantly toward the brown dwarf candidates (<0.1 msun). The IRAC infrared excesses found in stellar clusters and associations with and without central high mass stars are similar, suggesting that external photoevaporation is not very important in many clusters. Finally, we find no correlation between the X-ray luminosity and the disk infrared excess, suggesting that the X-rays are not strongly affected by disk accretion.Comment: 44pages, 17 figures. Sent to Ap

    Continuum and line modeling of disks around young stars II. Line diagnostics for GASPS from the DENT grid

    Get PDF
    Aims. We want to understand the chemistry and physics of disks on the basis of a large unbiased and statistically relevant grid of disk models. One of the main goals is to explore the diagnostic power of various gas emission lines and line ratios for deriving main disk parameters such as the gas mass. Methods. We explore the results of the DENT grid (Disk Evolution with Neat Theory) that consists of 300 000 disk models with 11 free parameters. Through a statistical analysis, we search for correlations and trends in an effort to find tools for disk diagnostic. Results. All calculated quantities like species masses, temperatures, continuum and line fluxes differ by several orders of magnitude across the entire parameter space. The broad distribution of these quantities as a function of input parameters shows the limitation of using a prototype T Tauri or Herbig Ae/Be disk model. The statistical analysis of the DENT grid shows that CO gas is rarely the dominant carbon reservoir in disks. Models with large inner radii (10 times the dust condensation radius) and/or shallow surface density gradients lack massive gas phase water reservoirs. Also, 60% of the disks have gas temperatures averaged over the oxygen mass in the range between 15 and 70 K; the average gas temperatures for CO and O differ by less than a factor two. Studying the observational diagnostics, the [CII] 158 \mum fine structure line flux is very sensitive to the stellar UV flux and presence of a UV excess and it traces the outer disk radius (Rout). In the submm, the CO low J rotational lines also trace Rout. Low [OI] 63/145 line ratios (< a few) can be explained with cool atomic O gas in the uppermost surface layers leading to self-absorption in the 63 \mum line; this occurs mostly for massive non-flaring, settled disk models without UV excess. ... abbreviatedComment: 15 pages, 25 figures, accepted for publication in A&

    Universal energy fluctuations in thermally isolated driven systems

    Full text link
    When an isolated system is brought in contact with a heat bath its final energy is random and follows the Gibbs distribution -- a cornerstone of statistical physics. The system's energy can also be changed by performing non-adiabatic work using a cyclic process. Almost nothing is known about the resulting energy distribution in this setup, which is especially relevant to recent experimental progress in cold atoms, ions traps, superconducting qubits and other systems. Here we show that when the non-adiabatic process comprises of many repeated cyclic processes the resulting energy distribution is universal and different from the Gibbs ensemble. We predict the existence of two qualitatively different regimes with a continuous second order like transition between them. We illustrate our approach performing explicit calculations for both interacting and non-interacting systems
    corecore