136 research outputs found

    U and Th content in the Central Apennines continental crust: a contribution to the determination of the geo-neutrinos flux at LNGS

    Full text link
    The regional contribution to the geo-neutrino signal at Gran Sasso National Laboratory (LNGS) was determined based on a detailed geological, geochemical and geophysical study of the region. U and Th abundances of more than 50 samples representative of the main lithotypes belonging to the Mesozoic and Cenozoic sedimentary cover were analyzed. Sedimentary rocks were grouped into four main "Reservoirs" based on similar paleogeographic conditions and mineralogy. Basement rocks do not outcrop in the area. Thus U and Th in the Upper and Lower Crust of Valsugana and Ivrea-Verbano areas were analyzed. Based on geological and geophysical properties, relative abundances of the various reservoirs were calculated and used to obtain the weighted U and Th abundances for each of the three geological layers (Sedimentary Cover, Upper and Lower Crust). Using the available seismic profile as well as the stratigraphic records from a number of exploration wells, a 3D modelling was developed over an area of 2^{\circ}x2^{\circ} down to the Moho depth, for a total volume of about 1.2x10^6 km^3. This model allowed us to determine the volume of the various geological layers and eventually integrate the Th and U contents of the whole crust beneath LNGS. On this base the local contribution to the geo-neutrino flux (S) was calculated and added to the contribution given by the rest of the world, yielding a Refined Reference Model prediction for the geo-neutrino signal in the Borexino detector at LNGS: S(U) = (28.7 \pm 3.9) TNU and S(Th) = (7.5 \pm 1.0) TNU. An excess over the total flux of about 4 TNU was previously obtained by Mantovani et al. (2004) who calculated, based on general worldwide assumptions, a signal of 40.5 TNU. The considerable thickness of the sedimentary rocks, almost predominantly represented by U- and Th- poor carbonatic rocks in the area near LNGS, is responsible for this difference.Comment: 45 pages, 5 figures, 12 tables; accepted for publication in GC

    THE ITALIAN QUATERNARY VOLCANISM

    Get PDF
    The peninsular and insular Italy are punctuated by Quaternary volcanoes and their rocks constitute an important aliquot of the Italian Quaternary sedimentary successions. Also away from volcanoes themselves, volcanic ash layers are a common and frequent feature of the Quaternary records, which provide us with potential relevant stratigraphic and chronological markers at service of a wide array of the Quaternary science issues. In this paper, a broad representation of the Italian volcano-logical community has joined to provide an updated comprehensive state of art of the Italian Quaternary volcanism. The eruptive history, style and dynamics and, in some cases, the hazard assessment of about thirty Quaternary volcanoes, from the north-ernmost Mt. Amiata, in Tuscany, to the southernmost Pantelleria and Linosa, in Sicily Channel, are here reviewed in the light of the substantial improving of the methodological approaches and the overall knowledge achieved in the last decades in the vol-canological field study. We hope that the present review can represent a useful and agile document summarising the knowledege on the Italian volcanism at the service of the Quaternary community operating in central Mediterranean area
    • …
    corecore