625 research outputs found

    Converging Perturbative Solutions of the Schroedinger Equation for a Two-Level System with a Hamiltonian Depending Periodically on Time

    Full text link
    We study the Schroedinger equation of a class of two-level systems under the action of a periodic time-dependent external field in the situation where the energy difference 2epsilon between the free energy levels is sufficiently small with respect to the strength of the external interaction. Under suitable conditions we show that this equation has a solution in terms of converging power series expansions in epsilon. In contrast to other expansion methods, like in the Dyson expansion, the method we present is not plagued by the presence of ``secular terms''. Due to this feature we were able to prove absolute and uniform convergence of the Fourier series involved in the computation of the wave functions and to prove absolute convergence of the epsilon-expansions leading to the ``secular frequency'' and to the coefficients of the Fourier expansion of the wave function

    An Experimental Study of the Near Field Region of a Free Jet with Passive Mixing Tabs

    Get PDF
    An experimental study was performed to determine the flow characteristics of a tabbed free jet. Results were acquired in the near field (nominally 2 tab widths upstream to 2 tab widths downstream of the exit plane) of a tabbed jet. Upstream pressure results showed static pressure distributions in both the x-and y-directions along the top surface of the tunnel. Hot-wire measurements showed rapid expansion of the core fluid into the ambient region. Two counter rotating regions of streamwise vorticity were shown on each side of the primary tab. An enhancement of the tabbed jet concept was proposed and tested. Specifically, two tabs, half the scale of the primary tab, were added to the primary tab to provide attachment surfaces for the normally occurring ejection of fluid. The secondary tabs caused a slight increase in the streamwise vorticity created from the upstream static pressure gradient while significantly increasing the re-oriented boundary layer vorticity. The combined pumping effect of the two counter rotating regions of vorticity caused a significant increase in the transport of the jet core fluid into the surrounding region

    Design and microfabrication of a high-aspect-ratio PDMS microbeam array for parallel nanonewton force measurement and protein printing

    Get PDF
    Journal of Micromechanics and Microengineering, 17(3): pp. 623-632.Cell and protein mechanics has applications ranging from cellular development to tissue engineering. Techniques such as magnetic tweezers, optic tweezers, and atomic force microscopy have been used to measure cell deformation forces on the order of piconewtons to nanonewtons. In this study, an array of polymeric polydimethylsiloxane (PDMS) microbeams with diameters of 10-40μm and lengths of 118μm was fabricated from Sylgard® with curing agent concentrations ranging from 5% to 20%. Resulting spring constants were 100-300nN/μm. The elastic modulus of PDMS was determined experimentally at different curing agent concentrations and found to be 346kPa to 704kPa in a millimeter-scale array and ~1MPa in a microbeam array. Additionally, the microbeam array was used to print laminin for the purpose of cell adhesion. Linear and non-linear finite element analyses are presented and compared to the closed-from solution. Conclusion: The highly compliant, transparent, biocompatible PDMS may offer a method for more rapid throughput in cell and protein mechanics force measurement experiments with sensitivities necessary for highly compliant structures such as axons

    Progress with the Upgrade of the SPS for the HL-LHC Era

    Full text link
    The demanding beam performance requirements of the High Luminosity (HL-) LHC project translate into a set of requirements and upgrade paths for the LHC injector complex. In this paper the performance requirements for the SPS and the known limitations are reviewed in the light of the 2012 operational experience. The various SPS upgrades in progress and still under consideration are described, in addition to the machine studies and simulations performed in 2012. The expected machine performance reach is estimated on the basis of the present knowledge, and the remaining decisions that still need to be made concerning upgrade options are detailed.Comment: 3 p. Presented at 4th International Particle Accelerator Conference (IPAC 2013

    Proton acceleration by irradiation of isolated spheres with an intense laser pulse

    Get PDF
    We report on experiments irradiating isolated plastic spheres with a peak laser intensity of 2-3 x 10(20) W cm(-2). With a laser focal spot size of 10 mu m full width half maximum (FWHM) the sphere diameter was varied between 520 nm and 19.3 mu m. Maximum proton energies of similar to 25 MeV are achieved for targets matching the focal spot size of 10 mu m in diameter or being slightly smaller. For smaller spheres the kinetic energy distributions of protons become nonmonotonic, indicating a change in the accelerating mechanism from ambipolar expansion towards a regime dominated by effects caused by Coulomb repulsion of ions. The energy conversion efficiency from laser energy to proton kinetic energy is optimized when the target diameter matches the laser focal spot size with efficiencies reaching the percent level. The change of proton acceleration efficiency with target size can be attributed to the reduced cross-sectional overlap of subfocus targets with the laser. Reported experimental observations are in line with 3D3V particle in cell simulations. They make use of well-defined targets and point out pathways for future applications and experiments.DFG via the Cluster of Excellence Munich-Centre for Advanced Photonics (MAP) Transregio SFB TR18NNSA DE-NA0002008Super-MUC pr48meIvo CermakCGC Instruments in design and realization of the Paul trap systemIMPRS-APSLMUexcellent Junior Research FundDAAD|ToIFEEuropean Union's Horizon research and innovation programme 633053Physic

    Low-lying, Rydberg states of polycyclic aromatic hydrocarbons (PAHs) and cyclic alkanes

    Get PDF
    TD-DFT calculations of low-lying, Rydberg states of a series of polycyclic hydrocarbons and cyclic alkanes are presented. Systematic variations in binding energies and photoelectron angular distributions for the first members of the s, p and d Rydberg series are predicted for increasing molecular complexity. Calculated binding energies are found to be in very good agreement with literature values where they exist for comparison. Experimental angle-resolved photoelectron spectroscopy results are presented for coronene, again showing very good agreement with theoretical predictions of binding energies and also for photoelectron angular distributions. The Dyson orbitals for the small "hollow" carbon structures, cubane, adamantane and dodecahedrane, are shown to have close similarities to atomic s, p and d orbitals, similar to the superatom molecular orbitals (SAMOs) reported for fullerenes, indicating that these low-lying, diffuse states are not restricted to π-conjugated molecules. © 2017 the Owner Societies

    Transverse Impedance of LHC Collimators

    Get PDF
    The transverse impedance in the LHC is expected to be dominated by the numerous collimators, most of which are made of Fibre-Reinforced-Carbon to withstand the impacts of high intensity proton beams in case of failures, and which will be moved very close to the beam, with full gaps of few millimetres, in order to protect surrounding super-conducting equipments. We present an estimate of the transverse resistive-wall impedance of the LHC collimators, the total impedance in the LHC at injection and top energy, the induced coupled-bunch growth rates and tune shifts, and finally the result of the comparison of the theoretical predictions with measurements performed in 2004 and 2006 on a prototype collimator installed in the SPS

    First Beam Commissioning of the 400 MHz LHC RF System

    Get PDF
    Hardware commissioning of the LHC RF system was successfully completed in time for first beams in LHC in September 2008. All cavities ware conditioned to nominal field, power systems tested and all Low level synchronization systems, cavity controllers and beam control electronics were tested and calibrated. Beam was successfully captured in ring 2, cavities phased, and a number of initial measurements made. These results are presented and tests and preparation for colliding beams in 2009 are outlined
    corecore