We study the Schroedinger equation of a class of two-level systems under the
action of a periodic time-dependent external field in the situation where the
energy difference 2epsilon between the free energy levels is sufficiently small
with respect to the strength of the external interaction. Under suitable
conditions we show that this equation has a solution in terms of converging
power series expansions in epsilon. In contrast to other expansion methods,
like in the Dyson expansion, the method we present is not plagued by the
presence of ``secular terms''. Due to this feature we were able to prove
absolute and uniform convergence of the Fourier series involved in the
computation of the wave functions and to prove absolute convergence of the
epsilon-expansions leading to the ``secular frequency'' and to the coefficients
of the Fourier expansion of the wave function