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Design and microfabrication a high-aspect-ratio PDMS 
microbeam array for parallel nanonewton force 
measurement and protein printing 
 
 

F Mert Sasoglu, Andrew J Bohl, and Bradley E Layton 
Drexel University, Department of Mechanical Engineering and Mechanics 
3141 Chestnut St, Philadelphia, PA 19104 
 
E-mail: blay@drexel.edu  

 
 

Abstract. Cell and protein mechanics has applications ranging from cellular development 
to tissue engineering. Techniques such as magnetic tweezers, optic tweezers, and atomic 
force microscopy have been used to measure cell deformation forces on the order of 
piconewtons to nanonewtons. In this study, an array of polymeric polydimethylsiloxane 
(PDMS) microbeams with diameters of 10-40μm and lengths of 118μm was fabricated 
from Sylgard® with curing agent concentrations ranging from 5% to 20%. Resulting 
spring constants were 100-300nN/μm.  The elastic modulus of PDMS was determined 
experimentally at different curing agent concentrations and found to be 346kPa to 704kPa 
in a millimeter-scale array and ~1MPa in a microbeam array. Additionally, the 
microbeam array was used to print laminin for the purpose of cell adhesion. Linear and 
non-linear finite element analyses are presented and compared to the closed-from 
solution. Conclusion: The highly compliant, transparent, biocompatible PDMS may offer 
a method for more rapid throughput in cell and protein mechanics force measurement 
experiments with sensitivities necessary for highly compliant structures such as axons. 

 
PACS number: 74B20, 74K10, 74E30 
 
Keywords: microbeam array, force measurement, PDMS, cell mechanics, laminin 

printing 
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 1. Introduction 

  
The primary objective of this paper is to demonstrate a method for design and fabrication 

of a highly compliant microbeam array for measuring cell stiffnesses in a highly parallel manner. 

The high-aspect-ratio, compliant beams may also be used to print arrays of proteins such as 

laminin on various surfaces for applications such as cell printing.  

Living cells change shape in response to applied mechanical forces e.g. (Vandenburgh 

and Kaufman 1979). In neurons, extended processes known neurites, which have the potential to 

develop into axons have been shown to be initiated in vitro by localized application of tensile 

forces (Bray 1984; Dennerll et al. 1989). While this has been achieved previously with glass 

(Zheng et al. 1991; Chada et al. 1997), we have chosen the soft material polydimethylsilixone 

(PDMS) for our microbeams for its mechanical compliance, optical transparency, 

manufacturability and biocompatibility (Zhao et al. 2005). Other attractive attributes of PDMS 

are its usability over a wide temperature range (-100°C to 100°C), low chemical reactivity, and 

non-toxicity (Lotters et al. 1997). PDMS has a relatively small modulus of elasticity, 100kPa – 

1MPa, e.g. (Carrillo et al. 2006) making it favorable for measuring stiffnesses of cell structures 

such as axons, which are know to be highly mechanically compliant ~10pN/µm (Kis et al. 2002), 

red blood cells ~20pN/μm (Liu et al. 2006) or chondrocytes which have been shown to have 

stiffnesses of approximately 20nN/μm (Shieh and Athanasiou 2006). To achieve the goal of 

measuring deflection optically, where resolution is limited to ~0.5μm, the stiffness value of the 

microbeams should be of the same order of magnitude as the specimen. By measuring the 

deflection and knowing the stiffness values of the beams both analytically and experimentally, the 

mechanical properties of cellular substructures such as axons or neurites may be determined. A 

schematic of the proposed strategy is shown in Figure 1.  

A variety of reasons exist for performing such force-deflection measurements. Examples 

include understanding the effects that various cytoskeletal proteins have in determining the 

mechanical properties of axons (Ingber 2003), understanding the role that various 

pharmaceuticals play in affecting neural growth characteristics (Bell 1996), and understanding the 

effects that various neurotoxins have on neural growth characteristics (Li et al. 1998). 
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Other potential technologies for measuring cell stiffness include MEMS-based 

microgrippers e.g. (Layton et al. 2005), which have been previously designed to manipulate 

microscopic objects (Lee et al. 2003). Atomic force microscope (AFM) tips, with relatively large 

stiffnesses values (μN/μm), when used in conjunction with a photodiode array can measure forces 

on the order of pN e.g. (Jacot et al. 2006) and have been used in torsion mode to measure small 

forces e.g. (Bhushan and Kasai 2004). However, these methods occlude the view of the cells, 

while the transparent PDMS array does not. Other force measurement devices include 

piezoelectrics (Rogers et al. 2004), but have yet to gain widespread use for single cells. Laser 

tweezers also offer an attractive method for nanoscale force measurement (Liu et al. 2006), but 

these have yet to be used in parallel (Danilowicz et al. 2005). Magnetic bead force application is 

another attractive and increasingly popular mode for its high sensitivity e.g. (Fass and Odde 

2003), and has recently been used in parallel systems (Danilowicz et al. 2005), but has not yet 

been demonstrated in a regular array pattern for cellular force measurement applications. Among 

other candidate technologies for nanoscale force measurement are carbon fiber beams (Nishimura 

et al. 2004) or carbon nanotubes (Salvetat et al. 1999), however difficulties in spatial ordering, 

and potential cytotoxicity e.g. (Sayes et al. 2006), make this approach less attractive for cell 

mechanics experiments. Herein, we parameterize the geometry of a PDMS microcone array and 

present a microfabrication and actuation strategy to impose forces on cellular components such as 

axons in order to understand the roles of particular cytoskeletal and molecular-motor-driven 

forces in the growth, maintenance and regeneration of nerves. A comparison of the various 

approaches and our proposed method is given in Figure 2. 

Figure 1. A schematic of the proposed parallel force measurement strategy. Printed cells are 
interrogated from above with an array of microbeams. Relative displacement, Δx, is measured 
between the stationary cells and the actuated microbeam array. The green square patches 
represent printed laminin and the structures tethered between the laminin patches and the tips 
of the microbeams represent the cells under mechanical tension. 

Δx

glass substrate

Δx

glass substrate
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For parallel force measurement in cells, an adhesive substrate must be provided. A popular 

material substrate for adhering neurons has been laminin e.g. (Yang et al. 2005). Laminin is a 

large, basement membrane glycoprotein with diverse biological functions including 

differentiation, migration, and adhesion of cells. Its cell binding ability (via membrane-bound 

integrin receptors) makes laminin an effective substrate coating for stimulating and enhancing 

cell migration and neurite outgrowth. Laminin-5 is a basement membrane extracellular matrix 

macromolecule that provides an attachment substrate for both adhesion and migration in a wide 

variety of cell types, including epithelial cells, fibroblasts, neurons and leukocytes (Koshikawa et 

al. 2000). The most common methods for laminin patterning are microcontact printing (De Silva 

et al. 2004; Sgarbi et al. 2005) and soft lithography (Kane et al. 1999). Other recent research into 

methods of micropatterning cells on chips e.g. (Bouaidat et al. 2004), includes micro-contact 

printing (μCP) (Lauer et al. 2001) and hydrophobic-Teflon-patterned neural guides (Tixier et al. 

2000; Griscom et al. 2002; Griscom et al. 2002). 

Figure 2 . Comparison of previous approaches and potential approaches to measure cell 
stiffness. Our proposed design is one million times more compliant than silicon microgrippers 
of similar dimension, two orders of magnitude more compliant than carbon nanotubes of 
same size, and five orders of magnitude more compliant than AFM tips. The length given for 
the magnetic particle is that of the particle diameter used by Fass and Odde. For a 
comprehensive review of additional microscale and nanoscale force measurement techniques 
see Van Vliet et al. (2003). (Van Vliet et al. 2003). 
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Network arrays of neurons seeded on microposts have been constructed for the purpose of 

mechanically stimulating multiple neurons simultaneously (Baldi et al. 2003), however since the 

microbeams were made of silicon, they had a stiffness roughly six orders of magnitude greater 

than that of the neurons and were thus incapable of sensitive force measurement. Odde has 

developed a magnetic-bead approach for teasing out individual axons with a force precision of 

~2-4 pN using a magnetic field with a spring constant of ~12 pN/μm (Faas and Odde, 2003).  

This approach is attractive for its high degree of precision, but has the drawback that only one 

axon may be teased at a time in a controlled manner. Other groups have recently used low aspect 

ratio (< 1:5) PDMS microbeam arrays cast from silicon-etched microbeams known as mPADs 

(microfabricated post array detectors) to measure forces on the order of a few tens to hundreds of 

nanonewtons per micrometer in fibroblast populations (Lemmon et al. 2005). This method allows 

the cultured cells to sit atop the microbeam array, with individual cells spanning several beamtips, 

actively straining the beams. By contrast, our method proposes to actively strain the cells from 

above with a one beamtip-to-one-cell strategy.  

In the present work, we demonstrate our ability to manufacture high-aspect-ratio PDMS 

silicone (polymeric) microbeams with dimensions on the order of millimeters capable of 

measuring tens of micronewtons, and a microfabricated array with a stiffness of hundreds of 

nanonewtons per micrometer. Other high-aspect-ratio (1:15), untapered PDMS structures exist, 

but are made with the relatively costly (Madou 2002) LIGA process e.g. (Kim et al. 2002). High-

aspect ratio PDMS structures have also been micromachined to perform small-scale cell culture 

e.g. (Hung et al. 2005). To our knowledge, the specific highly parallel one-probe-to-one-cell 

technique proposed herein has not been achieved or attempted for neurons patterned on a 

substrate e.g. (Roberts and Taylor 1983; Lamoureux et al. 2002). Completion of this goal will 

also allow us to begin to use the device for testing hypotheses related to the mechanical roles of 

important cytoskeletal proteins such as actin and tubulin as well as the mechanical roles of 

important molecular motor proteins such as myosin, dynein and kinesin e.g. (Baas 1998; Yu et al. 

2001; Baas et al. 2006). Specifically, it is assumed that the cytoskeleton, rather than the cell 

membrane, accounts for the majority of the stiffness of cell processes such as axons (Janmey 

1991; Maksym et al. 2000; Wang and Stamenovic 2000). Subsequently, if the expression rates, 

spatial distributions, or interconnectivity of these cytoskeletal elements via motor proteins is 

altered, changes in mechanical properties will presumably result (Canadas et al. 2002). 

Furthermore, successful implementation of our highly parallel force measurement system may 

also have implications for regrowth strategies for the central nervous system (Gold et al. 2005; 

Hata et al. 2006). 
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2. Theory and computations 

 
To determine the stiffness of cells by direct optical measurement, where a beam tip is 

brought into contact with a cell surface, the force on the beam tip is equal and opposite to the 

force on the cell 

 beamcell FF = , (1) 

where Fbeam is the force on the microbeam and Fcell is the force on the cell. Written in terms of 

deflection, x, and the stiffness, k, 

 ∫∫ =
− beambeam

0
beam

0
cell )()(

xxx

dxxkdxxk . (2) 

In the case of an Euler beam with isotropic mechanical properties loaded with one end 

fixed and the other end free, linear beam theory is accurate to 5% up to a beam tip deflection of 

30% of the beam length. Above this deflection, nonlinear theory must be used (Belendez et al. 

2002). In our experiments the beam aspect ratios were between 3.0 for our microbeam array and 

7.5 for our millimeter scale beam array. Using a Timoshenko beam model improves the accuracy 

by a factor of 6% and 1% respectively (Gere and Timoshenko 1997).  

 
2.1 Small deflection theory 

The stiffness value of a single microbeam is derived using the general form of the Euler 

equations (Gere 2004),  

                                                           ( )xF
dx

xvdxEI
dx
d

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
2

2

2

2 )()( .                                              (3) 

which is generally considered accurate to 10% for beam structures with aspect ratios of ten or 

greater. A cylindrical beam with constant modulus of elasticity, i.e. no gradient in material 

properties, and constant moment of inertia, has a stiffness of 

              
3

4

amcircularbe
4

3
L
rE

k Bπ
= .                        (4) 

For a conical beam with a base greater than its tip, and a constant taper, the stiffness value of a 

single conical microbeam is derived from the same formula and expressed as 

                                                    3

4

cone 4
3

L
arE

k Bπ
= ,                                                          (5) 
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where E is the elastic modulus, rB is the base radius, L is the beam length and (0 ≤ a ≤ 1) is the 

tip-diameter to base-diameter ratio. Equation (5) shows that by keeping the base diameter 

constant and having the beams tapered, more compliant beams are obtained. Plots of (5), in the 

region of interest are depicted in Figure 3. 

 
 

2.2 Large deflection theory 
  
 Large deflection was simulated using the commercially available software ANSYS. For 

small deflection theory, the analytical solution and ANSYS give similar results, but are only valid 

when small deflections are applied. Large deflection theory is valid for both large and small 

deflections. Large static deflection theory assumes a non-linear model and therefore it is valid for 

the non-dimensional loading parameter, α = FL2/2EI of less than 0.25 in Euler beams (Belendez 

et al. 2002). Contrary to small deflection theory, a linear approach, which is valid for small tip 

forces, minimal beam curvature, and loading perpendicular to the beam axis, large deflection 

theory produces accurate predictions under larger load, greater beam curvature, and a load that 

does not remain perpendicular to the beam axis. 

Figure 3. Beam stiffness, k, as a function of beam length, L, with a beam diameter of 10μm and 
taper ratios, a, ranging from 0.1 to 1.0.  Inset depicts the highlighted region. The curves 
represent a relationship of 1/L3. The modulus, E, used here was 900kPa, a value within the range 
of our experimental results shown below. 
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2.3 Finite element analysis of microbeams 
 
 To evaluate the deviation from the exact solution inherent in the general form of the 

Euler equations, beam stiffness was also modeled using finite element analysis. Finite element 

analysis was preformed with ANSYS using 3D solid tetrahedral 10-node elements. The PDMS 

microbeams were considered isotropic with an elastic modulus of 1.1MPa and Poisson’s ratio of 

0.45. We used this modulus as it was what we found from characterization of the microbeams, 

(3.1.2). Although some anisotropy may have been induced by our microfabrication methods (see 

discussion section), we used only one loading mode to characterize our beams, and thus used 

isotropy as an approximation. 

Two approaches were used in the ANSYS simulations: small static deflection theory 

and large deflection theory. For both of these approaches, two different boundary conditions were 

used: one with the beam tip free in two directions, and the other with the beam tip constrained 

along the beam axis (Figure 4). The former boundary condition more accurately represents our 

proposed experimental conditions, where cellular processes such as neurites are to be attached to 

the tips of the beams. The second boundary condition was used to simulate axial forces that may 

be present in the beams due to tensile forces caused by adhesion to the sample or substrate. Since 

large deflection theory allows for the tip force to deviate from being perpendicular to the beam 

axis. 

 

Figure 4. Boundary conditions for FEA. In both cases, displacement was fixed at the beam 
bases (top of the figure) (a) free tips. (b) tips with the  axial degree of freedom fixed. The 
drawing is to depict boundary conditions and is not to scale. The out-of-plane dimension was 
1mm. 

(a) (b)

F F

(a) (b)

F F

1 mm 

118 μm 
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3. Fabrication and mechanical testing 

3.1 Fabrication of large-scale prototype for obtaining PDMS properties 

 3.1.1 Fabrication. A steel master template was fabricated from a 3.75-mm-thick 

stainless-steel master mold using conventional drilling methods on a Haas TM2 CNC mill. A 

square array of sixteen holes was drilled, each through-hole having a diameter of 500µm and a 

depth of 3.75mm. PDMS prepolymer (Sylgard 182, Dow Corning), with an average pre-cured 

polymer chain length of 300 mers (~90nm long with a bonding radius of 1.5 Å between the Si – 

O backbone) was prepared by mixing the resin with curing agent at four ratios (5%, 7%, 10% and 

20% by weight) in a mixer attached to a hydraulic dispenser (Mixpac System 200). It was then 

kept ready in a Petri-dish at room temperature to pour into the injection vessel (Figure 5a). The 

steel mold was placed inside the injection vessel; PDMS was poured in, the cap screwed onto the 

end of the vessel and a vacuum applied to pull the PDMS through the mold. Just after pouring the 

PDMS prepolymer into the injection vessel, it was degassed under vacuum at 25 inches of Hg (85 

kPa) for approximately 30 minutes to eliminate bubbles. After inserting the steel mold into the 

vessel, a pressure difference of 40 kPa was applied to the vacuum tube to induce PDMS flow into 

the mold. The required pressure difference, Δp, for a through-hole may be calculated using the 

Young-Laplace equation (Pellicer et al. 2000), 

r
p θσ cos2

=Δ ,                     (6) 

where σ is the surface tension, θ is the contact angle measured in liquid and r is the radius of the 

fluid surface. If θ is greater than 90º, the liquid is non-wetting with the solid surface, rendering Δp 

negative and thus fluid must be pumped into the hole. However, if θ is less than 90º Δp is positive 

and no pressure must be supplied to drive the wetting fluid into the opening. The contact angle 

must be determined experimentally. We have observed experimentally that the contact angle is 

greater than 90º implying that pressure should not be required to drive the fluid into the hole. 

However, in this case, capillary flow into the holes was not observed at least over the timescale of 

minutes, presumably due to high viscosity of the uncured polymer. Afterwards, the mold was put 

into an oven for curing at 80° C for 120 minutes. It was then peeled from the mold after freezing 

at -70º C for 1 hour. This is necessary due to the surface interactions between the PDMS and the 

rough steel surface: PDMS has a coefficient of thermal expansion thirty times less than that of 

steel, and thus pulls away from the inner steel surface during freezing. 

3.1.2 Mechanical characterization. The beam array was placed horizontally and lowered 

onto an Accu-224 precision analytical balance (Fisher Scientific) with a sensitivity of 0.1mg 
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(1μN) so that only the tip of the beams touched the balance (Figure 5b). Balance deflection was 

measured to be negligible (12μm deflection under a 300mN load, or <0.1% of our calibration 

loads), so tip deflection was taken to be that of the micrometer reading. The micrometer used was 

a M3301 three-axis micropositioner with a precision of 10μm (World Precision Instruments, 

Sarasota, Florida). Tip force was read directly from the balance. We took force readings at 

deflections of 100μm, 200μm, 300μm, 400μm, and 500μm and fitted the results to F = kx, using 

linear regression finding k for each beam. This process was repeated three times on each of three 

different beams within the sixteen-beam arrays at each curing agent percentage. The elastic 

modulus was determined by using the analytically derived deflection formula for circular cross-

sectional beams (4) for the four curing-agent to base-agent ratios.  

 

3.2 Microfabrication and characterization of the microbeam array 
 
 3.2.1 Microfabrication. Photolithography was used to fabricate a 100 x 100 microbeam 

array mold in preparation for PDMS replica molding. A darkfield chrome photomask fabricated 

by J.D. Photo Tools (Oldham, Lancs, UK) was printed onto soda lime glass with a thickness of 

1.5 mm. A layer of negative photoresist, SU-8 2035 was spin-coated onto 3.175-mm-thick 

borosilicate at 500 rpm, 100 rpm/s for 10 seconds and 750 rpm, 300 rpm/s for 30 seconds with a 

Brewer Science CEE100 spin coater, resulting in a thickness of approximately 200 μm. It was 

then soft baked at 65° C for 5 minutes and ramped to 95° C for 20 minutes and slowly cooled to 

room temperature. The assembly was then exposed to UV light (365 nm) for 15 seconds under 

the mask at an intensity of 25mJ/sec·cm2. Post baking was performed to selectively cross-link the 

portions exposed to UV-light. The SU-8 was developed with PGMEA solution to obtain the 

Figure 5. (a) The injection vessel designed for fabricating the large beam array with through-
holes. (b) The micromanipulator and balance configuration used to measure beam stiffness for 
the larger beams. Force was recorded from the balance and deflection recorded from the 
manipulator. The angle α depicts that of the beamtip axis with the beam base axis. 

(b)  
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desired micromold. The PDMS mixture was prepared at a ratio of 10:1 and poured onto the SU-8 

mold. It was then degassed for approximately two hours to eliminate bubbles and cured at 80°C 

for approximately two hours. It was then peeled from the mold to obtain the desired geometry 

(Figure 6). 

 For the non-through holes, as used in our microfabrication process, air from the bottom of 

the holes must be removed if the microbeams are to become fully formed. This requires 

movement of a 1-10 μm diameter air bubble from the bottom of a hole, typically with a vacuum 

source. As the dimensions of the device are reduced this becomes increasingly difficult as 

evidenced by the pitting present on the PDMS microbeams presented by Schmitz et al. (2005).. 

 
 

3.1.2 Mechanical characterization of the microbeam array. Calibration of twenty-five 

beams from one of the 40-μm-diameter, 100-μm-long PDMS microbeam arrays was calibrated 

under light microscopy with a 20x objective (200x total magnification) with an Olympus IX81 

inverted microscope (Figure 7). The microbeam array was mounted on the edge of a standard 1” 

x 3” glass slide with the beams oriented horizontally. A pre-calibrated cantilever with a stiffness 

Figure 6. Schematic of the microfabrication process. (a) UV light is exposed to a thin layer 
of SU8 that has been deposited on a silicon substrate to produce the pattern. The light is 
passed through a glass pattern that has an opaque black plastic printed on it. (b) The 
unexposed portions are etched away to reveal a three-dimensional negative of the array. (c) 
PDMS is poured over the pattern and subjected to vacuum such that it fills all available space 
and air is allowed to escape. (d) The PDMS is peeled away from the mold, resulting in the 
final microbeam array. 
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of 215 nN/μm (Veeco Probes, Santa Barbara, CA) was mounted at the end of an Eppendorf NK-2 

micromanipulator and brought into contact with a single beam within the microbeam array. The 

micromanipulator was then moved a total of 40 μm in steps of approximately 5μm. Deflection of 

both the cantilever tip and microbeam tip were measured from images captured with a SPOT-RT 

camera according to kbeam = kcantilever(40μm-δcantilever)/δmicrobeam. 

 

 
 
4. Laminin printing 
 
 The high-aspect-ratio microbeam array was used to print laminin on a cover slip to be 

used as a pattern for cell attachment. Natural mouse laminin 23017-015 (Invitrogen) was mixed 

with 0.05 M TRIS base with a pH of 10.9, and 0.15 M NaCl in a Petri-dish at a concentration of 

20 µg/ml. The mixture was deposited onto the patterned side of the microbeam array for 30 

minutes and dried with a nitrogen stream (Sgarbi et al. 2004). A mass of 10 g was put onto the 

microbeam array for five minutes to achieve full contact between the array and the cover slip. 

The printed array was washed once with deionized water to wash away unattached laminin.  

  
5. Results 
5.1 Fabrication results 

After release, the large-scale beam array was sputtered with a 10 nm coating of platinum 

and imaged at 10 kV in an Amray 1860 scanning electron microscope (Figure 8a). Immediately 

observable are the fractured surfaces of the beam tips. This was due to the cleaving of the tips 

prior to release and after freezing.  

Figure 7. Mechanical characterization of one PDMS microbeams (right) with a precalibrated 
silicon Veeco Probes cantilever (left). (a) Initial contact is made. (b) At a PDMS beam tip 
displacement of 20μm shown here, the silicon cantilever displacement is approximately 
15μm. 

(a)

(b)

55 μm

75 μm

(a)

(b)

55 μm

75 μm
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By varying SU-8 film thickness, UV exposure energy, developing time, and agitation rate 

during developing, we were able to manufacture tapered microbeams (Figure 8b) in addition to 

the non-tapered microbeams depicted in Figure 7. If the mask and substrate assembly is placed at 

an angle to the UV source, tapered holes are achieved. Another way to obtain conical sidewalls is 

over exposure of the top portion of the resist film, resulting in tapered sidewall profiles. However, 

it is difficult to control the angle by changing the exposure time. The beam length consistency 

was measured with a Zygo optical profilometer (Model #NV6200) and found to be 118.4 ± 0.2 

μm. The tapered beams are theoretically less stiff than corresponding straight-walled beams (5). 

Tapered beams also enable smaller laminin base locations for cell attachment during the micro-

printing process. 

 
 
 
5.2 PDMS properties vs. curing agent volume fraction 

 Stiffness curves for the millimeter-scale beam array was measured by simultaneous 

recording of the micropositioner travel and the force on the scientific balance with the PDMS 

cantilever beam tip under load (Figure 9). Since the balance can only record the force 

perpendicular to the beam axis, and the final angle under full load was approximately 30 degrees, 

a factor of 1/cosα (Figure 5) was used to scale the modulus values resulting from the stiffness 

curves. The beam stiffnesses were found to increase with increasing volume fraction of curing 

agent. Curing agent percentage affected stiffness significantly up to 10%. Adding more curing 

agent shows only a slight increase in the stiffness. Adding curing agent less than 7% prevents full 

Figure 8 a) SEM image of a fabricated macroscale prototype of 4x4 array. Scalebar = 
4mm b) Optical micrograph of a portion of the microfabricated tapered PDMS 100 x 
100 microbeam arrays. The base diameters of the beams are approximately 10 μm and 
the length is approximately 100 μm. Scalebar = 100μm. 

(a)

(b)

(a)

(b)
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PDMS solidification. Therefore, the optimum value to obtain the lowest stiffness, while 

maintaining a solid beam is between 7-10%. 

 
 

5.3 Calibration of microbeams 

Shown in Figure 10 are the results of calibrating a microbeam array with beam diameters 

of 40μm compared to those with a 500μm diameter. The elastic modulus of PDMS for the four 

different curing agent concentrations (5%, 7.5%, 10%, and 20% by weight) resulted in moduli of 

346 ± 22, 473 ± 37, 589 ± 23, and 704 ± 29 kPa (Figure 10). An increase in elastic modulus at 

small scales has been seen previously for hydrogels e.g. using AFM indentation (Harmon et al. 

2003) and in silicon (Sundararajan et al. 2002). In the Harmon paper, AFM was performed on 

spin-coated thin films, and loaded in out-of-plane direction. The Sundarajan work used a three-

point bending method and attributed their variations to inconsistencies in crystal lattice 

orientation, and perhaps fewer defects in their single-crystal preparations. Anisotropy has also 

been found in other spin-coated PDMS preparations where the polymer chains align with the flow 

direction (Elzein et al. 2004). Others who performed AFM indentation on the surface of 

polymeric materials concluded that the small-scale material properties are consistent with the 

bulk properties to a scale of 40nm (Tranchida et al. 2006). However, the materials used by 

Tranchida et al. were not prepared with the extrusion/injection method of the current work, and 

thus are likely to be more amorphous. 
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Figure 9. Force-displacement curves from the large PDMS array used to determine beam 
stiffness, k, as a function of curing agent percentage. Each symbol represents the average 
force from a single beam. n = 9 for each linear regression line.  
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5.4 FEA results 
 
 Microbeams were modeled as either fixed at the base and free at the tip, or fixed at the 

base and fixed against axial displacement at the tip. Loads up to 5000 nN in increments of 1000 

nN were applied for each case using linear theory and non-linear theory. The closed-form 

solution was obtained using the stiffness formulation of the Euler-beam equation (4) and the 

known tip force. For deflections smaller than 3 μm, linear and nonlinear results give results with 

approximately 1% error. For the fixed-fixed boundary conditions, a closed-form solution may not 

be obtained by linear methods and thus only the numerical results are shown. Since the 

experimental loading conditions were such that the force on the tip of the PDMS microbeam did 

not remain perpendicular to its axis, a cosine factor commensurate with the angle observed was 

used to find the angle adjusted result (Figure 11). Additionally, the reason that the experimental 

results are concave down is perhaps due to the fact that as the PDMS beam deflects, approaching 

its own substrate, the bending force of the silicon cantilever required to maintain this bending 

force actually decreases. In this limit, the force on the calibration cantilever becomes a purely 

axial force, which would hold the PDMS microbeam pinned against its own substrate. In this 

scenario, the bending of the silicon cantilever could potentially be zero whereas the bending angle 

of the PDMS microbeam would be 90°, yielding a result of infinite compliance, or zero stiffness. 

Thus the downward concavity seen in the experimental curve of Figure 11 could continue until it 

ultimately hit the abscissa. 

 

Figure 10. A comparison of the elastic moduli measured from the millimeter scale array 
compared to that measured in the micrometer scale array.
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5.5 Laminin printing results 
 
 While our primary intended utility of the microbeam array is to achieve parallel force 

measurement on structures such as cells at the microscale and ultimately the nanoscale, it may 

also be used to print proteins. Having a laminin grid spacing that equals the beam tip spacing will 

facilitate alignment for planned neuron straining experiments. The microbeam array was used to 

print laminin on a glass cover slip in a pattern identical to the intended cell array pattern. After a 

mass of 10 g was put onto the array for five minutes to obtain the full contact between the 

microbeam array and the cover slip to obtain uniform printing, the microbeam array was 

removed, revealing the intended pattern (Figure 12).   

Figure 11. FEA results using the beam geometry of the microbeam device shown in Figure 
8b. The linear solution is a straight line and coincides with the closed-form solutions. The 
non-linear solution shows the effect that a finite angle at the beam tip produces. In the fixed-
fixed solution, the additional apparent stiffness is a result of the axial tensile force at the 
beam tip being amplified in the transverse direction. 
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6 Discussion and future work 
 

 The low modulus of elasticity, biocompatibility, and transparency of PDMS make it an 

ideal candidate for force transduction in highly compliant cells such as axons. We have tuned the 

modulus of elasticity of PDMS with curing agent and found an optimum value for having a solid 

PDMS beam with the smallest modulus of elasticity is between 7% and 10%. To examine the 

effect of miniaturization, mechanical testing was performed to obtain the elastic modulus of 

smaller beams. The elastic modulus of the small beams was found to be greater (~1.1 MPa) than 

that of the large beams (~600 kPa). The resulting stiffnesses are still on the order of 200nN/μm, 

or four orders larger than our target value. However, since stiffness, k, scales by the fourth power 

of beam thickness, once we achieve 4 μm diameter beam dimensions (ten times smaller), our 

stiffness will diminish by a factor of ten-thousand, putting us in the exact range we are targeting. 

This we expect to be achievable with more precise photolithography masks. As stated previously, 

our goal is to achieve beams with stiffnesses on the order of 10pN/mm, or approximately that of 

the neurons under investigation.  

We have achieved an aspect ratio of ten with by photolithography followed by PDMS 

replica molding. We found that photolithography developing time greatly affected hole depth and 

sidewall straightness. Over exposure and less developing times result in arrayed beams with 

tapered sidewalls. As aspect ratios grow and overall diameters shrink, we expect to find an 

Figure 12. Brightfield optical microscopy image of mouse laminin printed on a glass 
coverslip revealing a pattern identical to the microbeam array and the intended cell printing
pattern. A laminin substrate is critical to cell adhesion. The non-printed regions will allow 
for unhindered force measurement, since cells will experience less surface interaction force 
within this region. 
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enhanced trend in the scale-dependence of stiffness. This stiffening scale effect has been seen 

previously in silver nanowires (Jing et al. 2006) and was attributed to surface effects. Since the Si 

– O backbone of our system is clearly different from the presumably crystalline structure of the 

Ag nanowires of the Jing paper, the physics are clearly different. However, since we clearly saw 

stiffness decreases in the millimeter-scale beams as curing agent percentage diminished, we can 

conclude that the degree of crosslinking affects stiffness. One other possible explanation for the 

subtly increased stiffness is that the holes into which the microbeams were cast, preferentially 

excludes polymer chains and enhances crosslinking agent concentration, thus enhancing stiffness. 

This could have the effect of lengthening the post-curing polymer chains.  

Individual polymers tend to align with the primary flow direction during fabrication e.g. 

(Huang et al. 2001; McFarland and Colton 2004). Polymer chain alignment is shear rate 

dependent (Cormier and Callaghan 2002), and can induce crystallization (Somania et al. 2005). 

Polymer chain orientation in surface-treated PDMS has been induced previously by mechanical 

stretching experiments and shown to affect hydrophobicity (Genzer and Efimenko 2000). 

Polymer chain orientation has also been induced mechanically in PDMS to modify optical 

properties (Tanigaki et al. 1998). Longer chained PDMS molecules have also been shown to 

show diminished surface friction properties (Galliano et al. 2003), thus these would not 

necessarily be impeded from entering the microfabricated holes in our system. It may be useful in 

future studies to incorporate X-ray diffraction studies to quantify polymer chain alignment and to 

examine how the theoretical radius of gyration (Lapp et al. 1985) in a bulk melt differs from that 

of a micromanufactured system. We expect that as we attempt to create higher aspect ratio 

structures that this anisotropy will be enhanced. 

Another important consideration for using these structures in fluid is that in the non fully 

crosslinked state, they may tend to absorb water, thus altering the mechanical properties and 

perhaps causing unwanted deformation due to inhomogeneities. An experiment using a force 

measurement device such as ours would require either constant or periodic calibration if it were 

to be used for hours or days. While calibration of individual microbeams against a known 

standard would not be practical during a cell mechanics experiment, running a calibration on a 

few beams against a standard during an experiment would be necessary to track hydration effects. 

 A Matlab code is being developed to obtain the displacement of the beams while 

stretching cells. Having the deformed and undeformed bottom view of the beams under the 

microscope, the code calculates the displacement of the center of the beams from the images. The 

beams are positioned such that the tips of the beams simultaneously touch the glass slide and are 

visible from below with an inverted microscope. The initial configuration and the instantaneous 
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positions of the microbeams at different timelines during stretching process are then captured 

using camera software. The images are then converted within Matlab to binary images to obtain 

the circular outer borders of the beams. From this displacement of each beam is calculated by 

subtracting the center of the individual circular spots at the initial configuration and the displaced 

configurations. The code then determines the force applied to the cells using (1) and (2) to obtain 

the stiffness of each cell. 

 There are two primary long-term objectives of this project. One is to use the device to test 

hypotheses regarding the contributions of specific protein structures such as actin and tubulin and 

specific molecular motors such as myosin and kinesin on axonal growth mechanics e.g. (Baas et 

al. 2006). The nerve cells will be printed such that each nerve cell body sticks to only one laminin 

spot which is printed using the microfabricated beam array. The microbeam array will be aligned 

above the cell array and allowed to adhere to the cells in a one-to-one fashion using integrin 

coated tips (Fass and Odde 2003). Once adherence has occurred, the cells will be stretched 

unidirectionally in order to measure axon stiffness and grow the axons in a controlled manner. By 

altering expression rates or polymerization rates of important cytoskeletal proteins such as actin 

or tubulin, or their associated molecular motors such as myosin, kinesin and dynein, we may be 

able to gain valuable quantitative insight into how the forces generated by these molecules affect 

axonal growth rates. The other long-term goal is to use the device to guide neurons to grow in 

specific patterns on an electrically active substrate in order to build neuronal-based bio-sensor 

devices. Compared to previous neuron-based sensors e.g. (Pancrazio et al. 1999; Kovacs 2003), 

this may have the advantage in that cell-cell interaction may be directly controlled 

mechanistically rather than relying on axons to follow printed guides. 
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