55 research outputs found
Participatory approach to improve dietary diversity in Vihiga County, Western Kenya
Abstract accepted for poster presented at 3rd International Congress Hidden Hunger: Post-2015 Agenda and Sustainable Developmental Goals (SDG): Where are we now? Strategies to improve nutrition quality and combat hidden hunger, Stuttgart, Germany, March 20-22, 201
Validating quantitative PCR assays for cfDNA detection without DNA extraction in exercising SLE patients
Circulating cell-free DNA (cfDNA) has been investigated as a screening tool for many diseases. To avoid expensive and time-consuming DNA isolation, direct quantification PCR assays can be established. However, rigorous validation is required to provide reliable data in the clinical and non-clinical context. Considering the International Organization for Standardization, as well as bioanalytical method validation guidelines, we provide a comprehensive procedure to validate assays for cfDNA quantification from blood plasma without DNA isolation. A 90 and 222 bp assay was validated to study the kinetics of cfDNA after exercise in patients with systemic lupus erythematosus (SLE). The assays showed ultra-low limit of quantification (LOQ) with 0.47 and 0.69 ng/ml, repeatability ≤ 11.6% (95% CI 8.1–20.3), and intermediate precision ≤ 12.1% (95% CI 9.2–17.7). Incurred sample reanalysis confirmed the precision of the procedure. The additional consideration of pre-analytical factors shows that centrifugation speed and temperature do not change cfDNA concentrations. In SLE patients cfDNA increases ~ twofold after a walking exercise, normalizing after 60 min of rest. The established assays allow reliable and cost-efficient quantification of cfDNA in minute amounts of plasma in the clinical setting. Additionally, the assay can be used as a tool to determine the impact of pre-analytical factors and validate cfDNA quantity and quality of isolated samples
A framework for the local information dynamics of distributed computation in complex systems
The nature of distributed computation has often been described in terms of
the component operations of universal computation: information storage,
transfer and modification. We review the first complete framework that
quantifies each of these individual information dynamics on a local scale
within a system, and describes the manner in which they interact to create
non-trivial computation where "the whole is greater than the sum of the parts".
We describe the application of the framework to cellular automata, a simple yet
powerful model of distributed computation. This is an important application,
because the framework is the first to provide quantitative evidence for several
important conjectures about distributed computation in cellular automata: that
blinkers embody information storage, particles are information transfer agents,
and particle collisions are information modification events. The framework is
also shown to contrast the computations conducted by several well-known
cellular automata, highlighting the importance of information coherence in
complex computation. The results reviewed here provide important quantitative
insights into the fundamental nature of distributed computation and the
dynamics of complex systems, as well as impetus for the framework to be applied
to the analysis and design of other systems.Comment: 44 pages, 8 figure
Deep Randomized Neural Networks
Randomized Neural Networks explore the behavior of neural systems where the majority of connections are fixed, either in a stochastic or a deterministic fashion. Typical examples of such systems consist of multi-layered neural network architectures where the connections to the hidden layer(s) are left untrained after initialization. Limiting the training algorithms to operate on a reduced set of weights inherently characterizes the class of Randomized Neural Networks with a number of intriguing features. Among them, the extreme efficiency of the resulting learning processes is undoubtedly a striking advantage with respect to fully trained architectures. Besides, despite the involved simplifications, randomized neural systems possess remarkable properties both in practice, achieving state-of-the-art results in multiple domains, and theoretically, allowing to analyze intrinsic properties of neural architectures (e.g. before training of the hidden layers’ connections). In recent years, the study of Randomized Neural Networks has been extended towards deep architectures, opening new research directions to the design of effective yet extremely efficient deep learning models in vectorial as well as in more complex data domains. This chapter surveys all the major aspects regarding the design and analysis of Randomized Neural Networks, and some of the key results with respect to their approximation capabilities. In particular, we first introduce the fundamentals of randomized neural models in the context of feed-forward networks (i.e., Random Vector Functional Link and equivalent models) and convolutional filters, before moving to the case of recurrent systems (i.e., Reservoir Computing networks). For both, we focus specifically on recent results in the domain of deep randomized systems, and (for recurrent models) their application to structured domains
Deep Randomized Neural Networks
Randomized Neural Networks explore the behavior of neural systems where the
majority of connections are fixed, either in a stochastic or a deterministic
fashion. Typical examples of such systems consist of multi-layered neural
network architectures where the connections to the hidden layer(s) are left
untrained after initialization. Limiting the training algorithms to operate on
a reduced set of weights inherently characterizes the class of Randomized
Neural Networks with a number of intriguing features. Among them, the extreme
efficiency of the resulting learning processes is undoubtedly a striking
advantage with respect to fully trained architectures. Besides, despite the
involved simplifications, randomized neural systems possess remarkable
properties both in practice, achieving state-of-the-art results in multiple
domains, and theoretically, allowing to analyze intrinsic properties of neural
architectures (e.g. before training of the hidden layers' connections). In
recent years, the study of Randomized Neural Networks has been extended towards
deep architectures, opening new research directions to the design of effective
yet extremely efficient deep learning models in vectorial as well as in more
complex data domains. This chapter surveys all the major aspects regarding the
design and analysis of Randomized Neural Networks, and some of the key results
with respect to their approximation capabilities. In particular, we first
introduce the fundamentals of randomized neural models in the context of
feed-forward networks (i.e., Random Vector Functional Link and equivalent
models) and convolutional filters, before moving to the case of recurrent
systems (i.e., Reservoir Computing networks). For both, we focus specifically
on recent results in the domain of deep randomized systems, and (for recurrent
models) their application to structured domains
Incident type 2 diabetes attributable to suboptimal diet in 184 countries
The global burden of diet-attributable type 2 diabetes (T2D) is not well established. This risk assessment model estimated T2D incidence among adults attributable to direct and body weight-mediated effects of 11 dietary factors in 184 countries in 1990 and 2018. In 2018, suboptimal intake of these dietary factors was estimated to be attributable to 14.1 million (95% uncertainty interval (UI), 13.814.4 million) incident T2D cases, representing 70.3% (68.871.8%) of new cases globally. Largest T2D burdens were attributable to insufficient whole-grain intake (26.1% (25.027.1%)), excess refined rice and wheat intake (24.6% (22.327.2%)) and excess processed meat intake (20.3% (18.323.5%)). Across regions, highest proportional burdens were in central and eastern Europe and central Asia (85.6% (83.487.7%)) and Latin America and the Caribbean (81.8% (80.183.4%)); and lowest proportional burdens were in South Asia (55.4% (52.160.7%)). Proportions of diet-attributable T2D were generally larger in men than in women and were inversely correlated with age. Diet-attributable T2D was generally larger among urban versus rural residents and higher versus lower educated individuals, except in high-income countries, central and eastern Europe and central Asia, where burdens were larger in rural residents and in lower educated individuals. Compared with 1990, global diet-attributable T2D increased by 2.6 absolute percentage points (8.6 million more cases) in 2018, with variation in these trends by world region and dietary factor. These findings inform nutritional priorities and clinical and public health planning to improve dietary quality and reduce T2D globally. (c) 2023, The Author(s)
Children's and adolescents' rising animal-source food intakes in 1990-2018 were impacted by age, region, parental education and urbanicity
Animal-source foods (ASF) provide nutrition for children and adolescents physical and cognitive development. Here, we use data from the Global Dietary Database and Bayesian hierarchical models to quantify global, regional and national ASF intakes between 1990 and 2018 by age group across 185 countries, representing 93% of the worlds child population. Mean ASF intake was 1.9 servings per day, representing 16% of children consuming at least three daily servings. Intake was similar between boys and girls, but higher among urban children with educated parents. Consumption varied by age from 0.6 at <1 year to 2.5 servings per day at 1519 years. Between 1990 and 2018, mean ASF intake increased by 0.5 servings per week, with increases in all regions except sub-Saharan Africa. In 2018, total ASF consumption was highest in Russia, Brazil, Mexico and Turkey, and lowest in Uganda, India, Kenya and Bangladesh. These findings can inform policy to address malnutrition through targeted ASF consumption programmes. (c) 2023, The Author(s)
Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA-KIDNEY trial
Background: The EMPA KIDNEY trial showed that empagliflozin reduced the risk of the primary composite outcome of kidney disease progression or cardiovascular death in patients with chronic kidney disease mainly through slowing progression. We aimed to assess how effects of empagliflozin might differ by primary kidney disease across its broad population. Methods: EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA). Patients were eligible if their estimated glomerular filtration rate (eGFR) was 20 to less than 45 mL/min per 1·73 m2, or 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher at screening. They were randomly assigned (1:1) to 10 mg oral empagliflozin once daily or matching placebo. Effects on kidney disease progression (defined as a sustained ≥40% eGFR decline from randomisation, end-stage kidney disease, a sustained eGFR below 10 mL/min per 1·73 m2, or death from kidney failure) were assessed using prespecified Cox models, and eGFR slope analyses used shared parameter models. Subgroup comparisons were performed by including relevant interaction terms in models. EMPA-KIDNEY is registered with ClinicalTrials.gov, NCT03594110. Findings: Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and followed up for a median of 2·0 years (IQR 1·5–2·4). Prespecified subgroupings by primary kidney disease included 2057 (31·1%) participants with diabetic kidney disease, 1669 (25·3%) with glomerular disease, 1445 (21·9%) with hypertensive or renovascular disease, and 1438 (21·8%) with other or unknown causes. Kidney disease progression occurred in 384 (11·6%) of 3304 patients in the empagliflozin group and 504 (15·2%) of 3305 patients in the placebo group (hazard ratio 0·71 [95% CI 0·62–0·81]), with no evidence that the relative effect size varied significantly by primary kidney disease (pheterogeneity=0·62). The between-group difference in chronic eGFR slopes (ie, from 2 months to final follow-up) was 1·37 mL/min per 1·73 m2 per year (95% CI 1·16–1·59), representing a 50% (42–58) reduction in the rate of chronic eGFR decline. This relative effect of empagliflozin on chronic eGFR slope was similar in analyses by different primary kidney diseases, including in explorations by type of glomerular disease and diabetes (p values for heterogeneity all >0·1). Interpretation: In a broad range of patients with chronic kidney disease at risk of progression, including a wide range of non-diabetic causes of chronic kidney disease, empagliflozin reduced risk of kidney disease progression. Relative effect sizes were broadly similar irrespective of the cause of primary kidney disease, suggesting that SGLT2 inhibitors should be part of a standard of care to minimise risk of kidney failure in chronic kidney disease. Funding: Boehringer Ingelheim, Eli Lilly, and UK Medical Research Council
Children’s and adolescents’ rising animal-source food intakes in 1990–2018 were impacted by age, region, parental education and urbanicity
Animal-source foods (ASF) provide nutrition for children and adolescents’ physical and cognitive development. Here, we use data from the Global Dietary Database and Bayesian hierarchical models to quantify global, regional and national ASF intakes between 1990 and 2018 by age group across 185 countries, representing 93% of the world’s child population. Mean ASF intake was 1.9 servings per day, representing 16% of children consuming at least three daily servings. Intake was similar between boys and girls, but higher among urban children with educated parents. Consumption varied by age from 0.6 at <1 year to 2.5 servings per day at 15–19 years. Between 1990 and 2018, mean ASF intake increased by 0.5 servings per week, with increases in all regions except sub-Saharan Africa. In 2018, total ASF consumption was highest in Russia, Brazil, Mexico and Turkey, and lowest in Uganda, India, Kenya and Bangladesh. These findings can inform policy to address malnutrition through targeted ASF consumption programmes.publishedVersio
- …