217 research outputs found

    Coherence and incoherence in extended broad band triplet interaction

    Get PDF
    In the present analysis we study the transition from coherent to incoherent dynamics in a nonlinear triplet of broad band combs of waves. Expanding the analysis of previous works, this paper investigates what happens when the band of available modes is much larger than that of the initial narrower combs within which the nonlinear interaction is not subjected to selection rules involving wave momenta. Here selection rules are present and active, and we examine how and when coherence can be defined.Comment: 6 pages, 2 figure

    Standard map in magnetized relativistic systems: fixed points and regular acceleration

    Get PDF
    We investigate the concept of a standard map for the interaction of relativistic particles and electrostatic waves of arbitrary amplitudes, under the action of external magnetic fields. The map is adequate for physical settings where waves and particles interact impulsively, and allows for a series of analytical result to be exactly obtained. Unlike the traditional form of the standard map, the present map is nonlinear in the wave amplitude and displays a series of peculiar properties. Among these properties we discuss the relation involving fixed points of the maps and accelerator regimes.Comment: Work to appear in Phys. Rev. E. 2 figure

    Nonlinear dynamics of inhomogeneous mismatched charged particle beams

    Get PDF
    This work analyzes the transversal dynamics of an inhomogeneous and mismatched charged particle beam. The beam is azimuthally symmetric, initially cold, and evolves in a linear channel permeated by an external constant magnetic field. Based on a Lagrangian approach, a low-dimensional model for the description of the beam dynamics has been obtained. The small set of nonlinear dynamical equations provided results that are in reasonable agreement with that ones observed in full self-consistent N-particle beam numerical simulations

    Alternate islands of multiple isochronous chains in wave-particle interactions

    Full text link
    We analyze the dynamics of a relativistic particle moving in a uniform magnetic field and perturbed by a standing electrostatic wave. We show that a pulsed wave produces an infinite number of perturbative terms with the same winding number, which may generate islands in the same region of phase space. As a consequence, the number of isochronous island chains varies as a function of the wave parameters. We observe that in all the resonances, the number of chains is related to the amplitude of the various resonant terms. We determine analytically the position of the periodic points and the number of island chains as a function of the wave number and wave period. Such information is very important when one is concerned with regular particle acceleration, since it is necessary to adjust the initial conditions of the particle to obtain the maximum acceleration.Comment: Submitte

    Chaotic Interaction of Langmuir Solitons and Long Wavelength Radiation

    Full text link
    In this work we analyze the interaction of isolated solitary structures and ion-acoustic radiation. If the radiation amplitude is small solitary structures persists, but when the amplitude grows energy transfer towards small spatial scales occurs. We show that transfer is particularly fast when a fixed point of a low dimensional model is destroyed.Comment: LaTex + 4 eps file

    Nonlinear dynamics of relativistic charged particle beams

    Get PDF
    The idea behind this work is to analyze the transversal dynamics of a relativistic charged particle beam. The beam is azimuthally symmetric, focused by a constant magnetic field and supposed to be initially cold. While mismatched, nonrelativistic, and homogeneous beams oscillate with an invariant cold density profile, it is shown that relativistic homogeneous beams progressively heat and lose an important amount of constituents during its magnetic confinement. This heating process starts with phase-space wave-breaking, a mechanism observed before in initially inhomogeneous beams. The results have been obtained with full self-consistent N-particle beam numerical simulations

    Ponderomotive and resonant effects in the acceleration of particles by electromagnetic modes

    Get PDF
    Funding: U.K. Science and Engineering Research Council under Grant No. EP/N028694/1 (R.A.C.).In the present analysis, we study the dynamics of charged particles under the action of slowly modulated electromagnetic carrier waves. With the use of a high-frequency laser mode along with a modulated static magnetic wiggler, we show that the ensuing total field effectively acts as a slowly modulated high-frequency beat-wave field typical of inverse free-electron laser schemes. This effective resulting field is capable of accelerating particles in much the same way as space-charge wake fields do in plasma accelerators, with the advantage of being more stable than plasma related methods. Acceleration occurs as particles transition from ponderomotive to resonant regimes, so we develop the ponder- omotive formalism needed to examine this problem. The ponderomotive formalism includes terms that, although not discussed in the usual applications of the approximation, are nevertheless of crucial importance in the vicinity of resonant capture. The role of these terms is also briefly discussed in the context of generic laser-plasma interactions.PostprintPeer reviewe

    Multiple Island Chains in Primary Resonances.

    Get PDF
    We analyse the dynamics of a relativistic particle moving in a uniform magnetic field\ud and perturbed by a stationary electrostatic wave. We show that a pulsed wave produces an\ud infinite number of perturbing terms with the same winding number. The perturbation coupling\ud alters the number of island chains as a function of the parameters of the wave. We also observe\ud that the number of chains in is always even if the number of islands in each chain is odd

    Separatrix Reconnections in Chaotic Regimes

    Get PDF
    In this paper we extend the concept of separatrix reconnection into chaotic regimes. We show that even under chaotic conditions one can still understand abrupt jumps of diffusive-like processes in the relevant phase-space in terms of relatively smooth realignments of stable and unstable manifolds of unstable fixed points.Comment: 4 pages, 5 figures, submitted do Phys. Rev. E (1998
    corecore