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In the present analysis we study the dynamics of charged particles under the action of slowly
modulated electromagnetic carrier waves. With the use of a high-frequency laser mode along with
a modulated static magnetic wiggler, we show that the ensuing total field effectively acts as a
slowly modulated high-frequency beat-wave field typical of inverse free-electron laser schemes. This
effective resulting field is capable of accelerating particles in much the same way as space-charge
wake fields do in plasma accelerators, with the advantage of being more stable than plasma related
methods. Acceleration occurs as particles transition from ponderomotive to resonant regimes, so
we develop the ponderomotive formalism needed to examine this problem. The ponderomotive
formalism includes terms that, although not discussed in the usual applications of the approximation,
are nevertheless of crucial importance in the vicinity of resonant capture. The role of these terms is
also briefly discussed in the context of generic laser-plasma interactions.

I. INTRODUCTION

Plasma based particle acceleration by electromagnetic
waves has been a subject of interest and intense scrutiny
for many years, since early works on both magnetised
and unmagnetised configurations [1–6].
In a recent paper the interaction of charged particles

with localised wave modes was analysed, with central fo-
cus on the transition from the ponderomotive to the reso-
nant regimes of the interaction [7]. The model developed
in the analysis described the dynamics of relativistic par-
ticles in the field of purely electrostatic modes acting as
slowly modulated, high-frequency carriers.
A series of results obtained in the course of the inves-

tigation suggest that efficient particle acceleration can
be achieved even from relatively small injection veloci-
ties, as a result of ponderomotive and resonant effects
combined. The ponderomotive force can pull particles
towards wave-particle resonant conditions, and the reso-
nance itself provides the ultimate acceleration to close to
the speed of light.
Proper electrostatic modes for acceleration can be ob-

tained in plasmas in the form of plasma waves. Plasma
waves propagate within a relatively wide spectrum of
phase-velocities [8], but have zero group velocity in cold
plasmas. This pair of conditions (wide velocity spectrum
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and zero group velocity) is what is needed to create a
localised stationary envelope of a high-frequency carrier,
which has been shown to be a convenient structure for
acceleration.

Plasmas are, however, known to be unstable and not
particularly amenable to external control. To circumvent
this difficulty, it has been argued in the original work [7]
that a similar effect could be obtained with use of an in-
verse free-electron laser (FEL) configuration, formed by
properly modulated wiggler and laser modes [9–11]. The
effective beat mode formed by the laser and wiggler fields
would act similarly to the electric potential of the elec-
trostatic mode to provide the longitudinal accelerating
forces. The general motivation here, as mentioned ear-
lier, is that since electromagnetic modes do not need a
plasma environment, the overall scheme would be more
stable and robust. The concept was briefly discussed, but
not adequately explored.

The purpose of the present work is thus to investigate
this alternative but similar accelerating scheme, with
electromagnetic modes instead of the electrostatic mode.
The formalism requires more of an involved procedure
to obtain an accurate description of the ponderomotive
regimes valid at larger field amplitudes. This will bring
us to a relevant discussion on the problem of uphill ac-
celeration of charged particles in ponderomotive effective
potentials [12–15]. We shall see that uphill acceleration
is always present as particles migrate from the pondero-
motive to the resonant regime, at which point they jump
to high-speeds due to resonant trapping.

In the following sections we introduce the model, derive
a canonical averaging procedure for the ponderomotive
regime, analyse the full problem including comparisons
with the ponderomotive approximation, and finally draw
our conclusions.
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II. THE MODEL

The model to be investigated in the present paper con-
sists of a relativistic particle interacting with a modulated
wiggler and a constant amplitude laser field, both circu-
larly polarized. The wiggler is taken as a static structure
for simplicity, but extensions to general electromagnetic
(laser) wigglers are expected to produce similar results.
Since we consider fields with constant amplitudes, self-
consistency and wave damping effects are not taken into
account in the present analysis. These effects are recog-
nized as noteworthy in dense, high-current circumstances
[16] and shall be examined in future work.
The wiggler and the laser are respectively written in

the form

Aw = Aw0 e
− x2

2σ2 [cos(θw)ŷ − sin(θw)ẑ] , (1)

Al = Al0 [cos(θl)ŷ + sin(θl)ẑ] , (2)

where Aw0 and Al0 are the wiggler and laser respec-
tive constant amplitudes, and where θl ≡ klx − ωlt and
θw ≡ kwx are the phases of the laser wave and the mag-
netic wiggler. As we shall see shortly, the chosen polar-
izations for the potentials are essential to create a single
resonance with which efficiently accelerate particles. The
presence of harmonics of the fields, for instance, would
make it harder to achieve optimal acceleration. We also
note that the laser is uniform but the wiggler exhibits
a central hump of width ∼ σ which will be also essen-
tial to provide optimal conditions for acceleration. We

shall take σ ≫ 1/kl,w to comply with the slow modu-
lational condition. The one-dimensional model for the
potentials is chosen for simplicity and to show the agree-
ment between theory and computational results. Despite
its simplicity, the one-dimensional character of the po-
tentials can be taken as a good approximation for three-
dimensional settings if: (i) - one works with thin beams
whose cross section is much smaller than the laser spot
size, and (ii) - note as well that in relativistic beams the
effective particle mass limits particle transverse excur-
sions to paraxial regions where dependence of the mag-
netostatic wiggler on transverse coordinates is very small.
Quick estimates indeed show that typical corrections to
the wiggler field due to transverse effects, as for instance
terms of the form (kwr⊥)

2/8 arising from expansions of
Bessel functions [17], are much smaller than the unity
and can be discarded under the present circumstances.
Betatron oscillations are ignored under the same approx-
imation.

Arbitrary modulations of both fields over length and
time scales much greater than those associated with
the wave could be introduced and the analysis carried
through in exactly the same way.

From the fully dimensional relativistic Lagrangian

L = −mc2
√
1− v2/c2 + (q/c)A · v, (3)

the canonical Hamiltonian can be obtained in the follow-
ing dimensionless form

H = γ =

√
1 + p2x/α+A2

l,0 +A2
w,0e

− x2

σ2 + 2Al,0Aw,0e
− x2

2σ2 cos(x− t). (4)

In the above Eq. (4) we introduce
√
α ≡ ω/c(kl + kw)

as the dimensionless phase-velocity of the FEL travel-
ing wave carrier mode, formed by the beat-like coupling
of the wiggler and laser fields [18]. In addition, we
adopt the following set of normalisations: H/mc2 → H,√
αpx/mc → px, qA/mc2 → A, (kl + kw)(x, σ) → (x, σ),

and ωt → t, with m as the particle mass, q as its charge,
c as the speed of light, and γ as the relativistic factor.

We note that due to the normalizations adopted, the
particle velocity measured in units of α−1/2 is equal to
the dimensional velocity normalized by the speed of light,
vx,dim/c; in other words, vx,dim/c = vx

√
α, a relation

that helps to shorten the notation in the coming discus-
sion.

The Hamiltonian (4) is exact for the conditions of our
analysis and one sees that it resembles the purely elec-
trostatic version discussed in Refs. [7, 15]. Indeed, the
effective 1D dynamics along the x-axis contains a slowly
modulated high-frequency carrier term that can therefore

trap and accelerate particles if proper resonant conditions
are met. The resemblance becomes even more striking in
regimes of low-amplitude fields, where after a Taylor ex-
pansion of Hamiltonian (4) the beat-wave field takes on
the electrostatic-like shape of an additive potential.

One can start the analysis of slowly modulated high-
frequency Hamiltonians of the form (4) with aid of a
ponderomotive approach. The ponderomotive approxi-
mation, when valid, describes the dynamics in terms of
time averaged (over high-frequencies) quantities, which
leads to a simpler and often integrable formalism. It
has been argued that a proper ponderomotive approxi-
mation, based on cycle-averaged Lagrangians, can be ob-
tained as one replaces the radicand in expression (4) with
its time average [12, 13]. In practical terms this proce-
dure removes the time dependent beat. The resulting
expression is accurate provided that the particle veloc-
ity keeps well away from the resonance (ẋ = 1) where
the formalism breaks down and particles are captured by
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the resonance. However, since the whole premise of the
present analysis depends on what happens in the imme-
diate vicinity of the breakdown region, we shall augment
the more conventional approximation with a term taking
proper account of the time dependent term of Hamilto-
nian (4) in the average dynamics.
We thus proceed to the derivation of our ponderomo-

tive approximation.

III. A CANONICAL TRANSFORMATION
LEADING TO THE PONDEROMOTIVE

APPROXIMATION

Our ponderomotive approach basically tries to seek
a canonical transformation with which one can consis-
tently remove all high-frequency terms in the governing
Hamiltonian. The procedure, if successful, converts all
dynamical variables into their average form as mentioned
above [19–21]. To perform the canonical transformation
we start from the exact Hamiltonian (4) and make use
of a generating function of the form F = F (x, Px, t) =
xPx+f(x, Px, t) [22]. Accordingly, the relevant variables
transform as

px = Px + ∂f/∂x, (5)

X = x+ ∂f/∂Px, (6)

and

H = H + ∂f/∂t, (7)

where X,Px,H are the transformed variables. The func-
tion f must be such that the new Hamiltonian H and
new variables X and Px are free of high-frequency terms.

The Hamiltonian H contains both time dependent and
time independent terms, the former emerging from the
beat-wave term. The ponderomotive approximation we
seek should be able to single out the average effect of this
time dependent term on the average particle dynamics.

One can expect the ponderomotive approach to be-
come a little intricate in the present case, in virtue of
the square root character of the original Hamiltonian (4).
Since we do not wish to compromise the validity of the ap-
proach at high-intensity fields, we shall attempt to write
the ponderomotive Hamiltonian in the form

H =

√
1 + P 2

x/α+A2
l,0 +A2

w,0e
−X2

σ2 + h(X,Px), (8)

where the as yet unknown term h(X,Px) incorporates the
average effect of the high-frequency beat term involving
the product of the arbitrary amplitudes Aw0 and Al0.
The function h is not assumed small, appearing at the
same magnitude level as both amplitudes, and this is
why we include h in the radicand and not somewhere
else.

If one demands that the generating function f be free
of secularly growing terms then h can be calculated. The
first step towards its evaluation is simply to use equations
(5), (7) and (8) to obtain

√
1 + (Px + ∂f/∂x)2/α+A2

l,0 +A2
w,0e

− x2

σ2 + 2Al,0Aw,0e
− x2

2σ2 cos(x− t) +
∂f

∂t
=√

1 + P 2
x/α+A2

l,0 +A2
w,0e

− x2

σ2 + h(x, Px). (9)

One then transposes the ∂f/∂t term to the right-hand-
side, squares both sides of the resulting expression, and

ends up with a closed equation for f :

2H∂f

∂t
+

2Px

α

∂f

∂x
=

(
∂f

∂t

)2

− 1

α

(
∂f

∂x

)2

− 2Al,0Aw,0e
− x2

2σ2 cos(x− t) + h(x, Px). (10)

This is a non-linear equation for the high-frequency vari- able f , which therefore requires the condition

h = −

⟨(
∂f

∂t

)2

− 1

α

(
∂f

∂x

)2
⟩

θ

(11)



4

- the symbol ⟨⟩θ indicating average over fast variables -
in order to cancel out the average driving terms present
on its right-hand-side. We solve the pair of equations
(10) and (11) by means of a harmonic expansion for f .
More to the point, we write f = f1(θ) + f2(2θ) + ... with
θ = x − t and ⟨fn⟩θ = 0, neglect in this first approach
higher harmonics than the second, but do not necessarily
assume f1 small. The critical assumption here is that
higher-harmonics make a small correction to the full form
of function f , which is something that shall be verified
when the time comes to compare theory and numerics.
Under these conditions,

f1 =
1

H
1(

1− Px

αH
)Al,0Aw,0e

− x2

2σ2 sin(x− t), (12)

allowing us to obtain an approximate expression for h in
the form

h = −1

2

(
1− 1

α

)
A2

wA
2
l e

− x2

σ2

(Px/α−H)2
. (13)

Expression (13) is still a difficult one to solve, the reason
being the presence of h in the factorH (see Eq. (8)) on its
right-hand side. A full solution can be actually obtained
for relation (13), but in order to have a manageable one
we approximate h in H by the value it would take had
we truncated the theory to first harmonic terms. In this
case the condition for the absence of secular terms would
be h = 0 which we therefore take as our initial approx-
imation allowing us to obtain an improved value from
relation (13).

Putting together expressions (8) and (13) and replac-
ing x with X in the very slowly modulated amplitudes
where the replacement is allowable ((x−X)/σ ≪ 1), one
finally arrives at the ponderomotive Hamiltonian,

H =

√√√√1 + P 2
x/α+A2

l,0 +A2
w,0e

−X2

σ2 − 1

2

(
1− 1

α

)
A2

wA
2
l e

−X2

σ2

(Px/α− Γ)
2 (14)

(Γ ≡
√
1 + P 2

x/α+A2
l,0 +A2

w,0e
−X2

σ2 ), whose dynamics

shall later be compared with that provided by the exact
Hamiltonian (4).

As mentioned earlier, the full ponderomotive Hamil-
tonian (14) inherits an explicit contribution from the
wave-particle resonances that are potentially present in
the physics of the problem, as described by the exact
form (4). This contribution is represented by the last
term within the square root of expression (14), which be-
comes increasingly relevant as one approaches resonance.
Away from resonance, where this term could arguably be
dropped, one would obtain the more conventional form of
the ponderomotive approximation where only quadratic
forms involving the slowly modulated laser’s and wig-
gler’s individual amplitudes are present [13].

IV. RESONANT TRAPPING

As discussed in the Introduction, the idea of this work
is to drive particles with the ponderomotive forces up
to a point where trapping in the potential troughs of
the high-frequency beat-wave takes place. Under this
circumstance, where the ponderomotive approximation
is no longer valid, the focus of interest turns to how
much energy particles can gain from the resonant pro-
cess. With the help of relativistic electrostatic models,

it has been shown that the gain may be considerable
[7, 15, 23] and the purpose of this section is to investi-
gate the case where the inverse FEL-like configuration
replaces the electrostatic model.

Estimates are developed along the lines of previous
work [7]. In other words, we make use of the fact that on
the verge of trapping, particles that were initially lagging
the beat-wave have been accelerated by the ponderomo-
tive field and are now moving with nearly the beat-wave’s
phase velocity. We use this configuration as an initial
condition to calculate the maximum velocity, disregard-
ing the slow laser modulation in this fast and short-length
trapping and acceleration process.

Since we discard slow modulation in the trapping pro-
cess, the dynamical system becomes one degree of free-
dom (it now depends only on the single phase θ = x− t)
and a constant of motion can be obtained in the form

H − px = Constant. (15)

Recalling that vx = ∂H/∂px we can rewrite expression
(15) entirely in terms of the particle speed, and imposing
the initial condition that vx = 1 at θ (mod 2π) = 0,
one can obtain the maximum velocity at θ (mod 2π) =
π in terms of the laser and wiggler amplitudes Al0 and
Aw0 for any given α. Note that we will always pick the
positive root of relation (15) at θ = π. The positive
root is accompanied by a negative root whose modulus is,



5

however, always smaller due to the positive propagation
direction of the trapping carrier.
A simple expression for the maximum velocity, valid

when the dimensionless laser and wiggler amplitudes
(also referred to as the wiggler strength parameter) are
much larger than the unity, takes the following form

vx,dim(θ = π)

c
= vx

√
α −→

Aw0,Al0≫1

√
α(f − 1)2 + 2

√
(α− 1)2f(f + 1)2

f(−4α+ f + 2) + 1
+O(

1

A2
(l,w)0

) ∼
{√

α if 0 < f ≪ 1 or f ≫ 1
1 if f → 1,

(16)

where the fraction f is introduced as f = Al0/Aw0.
The truly remarkable aspect suggested by approximation
(16) is that acceleration is optimal and unimpeded when
laser and wiggler have the same amplitude: the larger the
common amplitude fields are, the closer to c the maximal
velocity is. On the other hand, if f ̸= 1, there will be
a limit for the maximum velocity at some point between
the phase-velocity of the beat mode c

√
α and the speed of

light, no matter how large the fields are. The maximum
velocity of the particle does not significantly depend on
its initial phase.

To have a general view of the acceleration efficiency
we introduce the velocity gain Gvπ ≡ Log[(1−

√
α)/(1−√

αvx(θ = π))] measuring how close to c is the maximum
velocity in comparison with the phase velocity. Then we
produce the color graded plot of Fig. 1 to represent Gvπ

in terms of the normalized laser and wiggler amplitudes.
The figure indeed shows that unless one works with equal
amplitude waves, acceleration is not optimal. Even if
one increases both amplitudes, keeping the two of them
unequal with f ̸= 1 limits the maximum velocity. On the
other hand, when f = 1 the maximum, velocity can be
as close to c as one wishes, all depending on the choice
of the proper common mode amplitudes, whose extended
range seen in the figure is compatible with the intensities
generated in current petawatt and future exawatt high-
frequency lasers [24] and self-focused infrared lasers of
relativistically high intensities [25].

0. 100 200

Al0

0.

100

200

A
w
0

0 7 14

Gvπ

FIG. 1: Color graded map for Gvπ in terms of laser and wig-
gler amplitudes. We take α = 0.9.

V. NUMERICAL ANALYSIS OF
PONDEROMOTIVE, RESONANT AND

ACCELERATING REGIMES

We now perform the exact numerical analysis of the
dynamics, identifying the ponderomotive and trapping
regimes and comparing numerical results with the respec-
tive analytical results. As mentioned in the Introduction,
special attention will be given to the breakdown of the
ponderomotive regimes, where resonant trapping and ef-
ficient acceleration are expected to occur. The analysis
will be conducted as the injection velocity v0 is varied.
We consider α = 0.9, σ = 103, Aw0 = Al0 = 102, and
x(t = 0) = −10σ, unless otherwise stated. We point out
that as far as the width σ is much larger than the wig-
gler wavelength, its exact extension does not affect the
outcome of the acceleration process. We verified that
σ = 100 is still fine, but that shorter widths does affect
the efficiency of the adiabatic process leading to acceler-
ation.

A. The ponderomotive regime

In panel (a) of Fig. 2 we start the analysis by of-
fering a view on the exact dynamics as obtained from
the full Hamiltonian (4). The injection velocity seen in
the plot is low enough that trapping is absent, so the
entire dynamics remains in the ponderomotive regime.
Two curves representing the particle velocity are drawn:
the blue one depicts the raw solution for the Hamilto-
nian dynamics, and the red represents the average of this
raw solution taken over narrow temporal-windows, each
window involving a large number of high-frequency oscil-
lations. We indeed see that the particle velocity always
remains below the dashed light brown line representing
the phase-velocity

√
α of the high-frequency driver mode.

From both curves one observes the typical double
hump dynamical profile, as particles travel across the
localized field whose peak sits right at the central de-
pression. The average velocity is always positive, so in
this case one is observing passing particles.

The double hump, the characteristic signature under
the condition of nearly resonant particles driven by equal
and large amplitude fields, means that as particles are in-
jected in the modulated carrier, they go through stages of
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0.8

0.9

1.0

v
x
[α
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(b)
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Hamiltonian with h(x)

Hamiltonian without h(x)
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FIG. 2: Velocity versus time for passing particles with injec-
tion velocity v0

√
α = v0,dim/c = 0.867. In panel (a) we plot

the full solution from the exact Hamiltonian (4) and the re-
spective time average curve. In panel (b) the time average
curve of the exact solution is compared with the solution of
the ponderomotive Hamiltonian (14), with and without the
h-term correction (see Eqs. (8) and (14)) .

uphill acceleration. This is a rather unexpected feature,
as the most usual sort of acceleration in ponderomotive
regimes is the downhill one, where particles are pushed
back, and not attracted by the potential.

Uphill acceleration has been studied in some cases with
help of Lagrangian approaches [12, 15]. The Lagrangian
approach provides valuable information, being however
entirely consistent only when the average velocity bears
a monotonic relationship with the modulated potential.
This latter fact is observed by the use of the energy con-
serving form E = v∂L/∂v−L, which produces a relation
between any given velocity and the field intensity present
in L [14]. This is not what happens here since either to
the right-hand side or left-hand side of the symmetric
central depression, particles cross points of different field
intensities with the same velocity.

We then proceed to Fig. 2 (b) where the average of
the fully numeric solution (red) for the particle velocity
is compared with the average velocity as obtained from
the canonically derived ponderomotive Hamiltonian (5),
both with the h-corrective term turned on (black) and
off (green). The figure shows that the presence of the h
term in the ponderomotive Hamiltonian perfectly adjusts
the resultant dynamics to the fully numerical curve. On
the other hand, as one takes h → 0 the resulting curve is
purely downhill (particles are repelled from the potential)

as found in the Lagrangian theories.
To emphasize the role of the h-term we also consider

the case of smaller injection velocities. Keeping the same
field amplitudes, one would expect particles to be re-
flected by the localized beat mode under these circum-
stances. This is what the final negative velocity of Fig. 3
indeed reveals, albeit with some distinguishable effects
due to uphill acceleration present once again. In the
figure, where α is also lowered in order to enhance the
approach to resonant effects (α = 0.77), one again ob-
serves particle being initially attracted by the localized
field (notice the upward distortion in the incoming or-
bital leg) only to be ultimately reflected later on, with
the final negative velocity. Comparisons with h turned
on and off are again displayed with the present model
showing good agreement with full simulations, including
the region where particle velocities are reversing.

0 12000 24000

t

−1

0

1

v
x
[α

−
1
/
2
]

average velocity

Hamiltonian with h(x)

Hamiltonian without h(x)

phase velocity

reference line

9000 11000
0.6

0.8

FIG. 3: Velocity versus time for reflected particles, display-
ing comparisons of the time averaged exact solution, and the
ponderomotive solution with and without the h term present.
In the present case we consider α = 0.77.

The importance of correctly describing the peaks of
the double hump profile seen in panel (a) of Fig. 2 or the
single hump of Fig. 3, is that these peaks are in fact the
first segments of a particle orbit to be captured by the
carrier mode as the injection velocity grows. Let us see
next how the orbit evolves when this resonant trapping
takes place.

B. Breakdown of the pondermotive regime,
trapping and resonant acceleration

We focus on the case of panel (a) of Fig. 2; the relevant
points of the pertinent discussion are equivalent for the
case of reflected particles represented in Fig. 3.

If one takes the injection velocity a little higher than
the one seen in in Fig. 2 (a), particles are captured at the
earliest (leftmost) velocity peak. According to the case
f = 1 of expression (16), velocities jump to some point
close to the speed of light when the amplitudes are large
and this is what can be observed from Fig. 4.

The acceleration process here differs from what has
been previously seen in the context of electrostatic



7

0 10000 20000
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0
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x
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−
1
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2
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phase velocity

8000 20000

0.94

1.00

FIG. 4: Extreme acceleration as particles are captured by the
resonance beat mode. The inset reveals how close to the speed
of light the particle can reach after capture; the numerical
maximum of the velocity yields 1-

√
αvxmax ∼ 10−6, with α =

0.9, v0
√
α = v0,dim/c = 0.87.

modes, where particles are catapulted at a single field
maximum then continue with a velocity above the phase
velocity. Here particles are trapped at the leftmost peak
of Fig. 2 where the modulated field has not yet reached
its maximum located at x = 0. Therefore particles can-
not overtake the next, higher potential crest, and remain
oscillating in the wave trough for a long period of time
while undergoing a slow adiabatic energy exchange pro-
cess along the way [7, 23]. The adiabatic gain reaches
its peak at the maximum of the modulated field enve-
lope and shortly after the energy exchange reverses as
the fields start to decrease. As a result particles eventu-
ally leave the field region with lower velocities than the
maximum, a fact that suggests that it would be useful
to perform extraction near the envelope peak. The final
velocity of the particle depends on its initial phase, while
the maximum velocity does not.

An excellent variable one can use to follow the adia-
batic process is provided by the combination H − px in-
troduced by Eq. (4) The variable is rigorously constant
in the case of spatially uniform fields and is expected to
display slow adiabatic variations in the presence of slow
spatial modulations.

This is almost precisely what Fig. 5 shows, but not
quite. Due to the trapping/detrapping events on both
sides of the potential hump, the evolution of H − px is
not reversible at all times: the injection velocity, which
incidentally barely crosses the trapping threshold, may
differ from the final velocity vf as the particle breaks
away from the localized pulse. However, the dynamics is
smoothly adiabatic along its way to X=0 which reiterates
the fact that this is the ideal locus for particle extraction.

The adiabatic process traps and efficiently accelerates
the electron in the resonance. In a way, the traditional
tapering is here replaced by the slow change of the wiggler
amplitude.

We also created Fig. 6 in order to examine how
the acceleration process responds to increasing ampli-
tudes of the electromagnetic fields. The figure displays

−10000 0 10000

X

34

43

52

H
−
p
x

v0 = 0.87c

FIG. 5: Adiabatic variations of H−px indicating reversibility
at X = 0 but not at the left/right ends of the plot.

once again the velocity gain, but this time for the full
modulated problem and not simply the constant am-
plitude idealised model analysed in Fig. 1 . The in-
jection velocity is such that the particle orbit is barely
touching the resonant line and therefore just getting
trapped in the beat driver. We measure the gain as
Gvmax = Log[(1−

√
α)/(1−

√
α(vx)max)] where (vx)max is

the absolute maximum velocity the particle reaches, and
observe that it follows closely its counterpart as defined
in Fig. 1. It appears that even though in the modulated
case trapping occurs at lower field amplitudes, once the
adiabatic process takes over it follows the oscillatory dy-
namics approximately to the same maximal velocity as
in the uniform case.

0 100 200

Al0 = Aw0

0

5

10

15

Gv

theory

simulation

FIG. 6: Maximum gain of the fully modulated case (red dots)
compared with the theoretical gain of the uniform amplitude
case as in Fig. 1. Once again, α = 0.9.

In a very low density limit, the beam can be thought as
a collection of single particles, in a way the interaction
among them can be neglected of their dynamics. The
maximum velocity of the particle, as in many accelerator
devices, depends on its initial phase. In order to analyse
the behaviour of the velocities at the moment a particle
reaches its maximum velocity, we introduce a new pa-
rameter in the system: the initial phase, θ0. This phase
can be simply added to the definition of θl, resulting in
θl = klx−ωlt+ θ0. The initial phase emulates the initial
conditions of the beginning of the particle dynamics.
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FIG. 7: Velocity of the particles as a function of the initial
phase, θ0 of the particle at the moment where the velocity is
maximum for θ0 = 0. Parameters are the same as in Fig. 4.

In the present model, as can be seen in Fig. 7, there
are very narrow regions of θ0 where the velocity of the
particle at the moment the particle initially located at
θ0 = 0 reaches its maximum velocity is lower than the
phase velocity. The narrow regions are interleaved with
plateaux of near-c velocities. This is a desirable feature
for accelerators.
The length of the particle bunch, for a very low density

limit, to obtain consistent acceleration (which is directly
related to the phase-acceptance) is, for the parameters
used in Fig. 7, in the order of the half length of the
ponderomotive potential, which in turn is equal to λp =
2π/kp, with kp = kw + kl (from θ0 ≈ −π to θ0 ≈ π/2).
In the cases where kl ≫ kl, the bunch length is ≈ λl/2,
where λl = 2π/kl.
If the final velocities of the particles were plotted in

Fig. 7, the plateaux should be even more pronounced,
while the negative velocities should not be present.

C. General view of the dynamical regimes

At this point one is aware that the model investigated
here has three operational regimes: (i) a ponderomotive
regime of passing particles - where particles sweep across
the localized field without trapping and any energy gain,
(ii) a ponderomotive regime of reflected particles - where
particles are reflected back off the localized field, again
with no trapping and no net energy gain and (iii) a trap-
ping regime where ponderomotive approximations break
down and particles are captured by the wave troughs of
the beat-wave field with subsequent large amounts of en-
ergy gain.
One can visualise all regimes and the respective tran-

sitions from one to another with color graded maps for
the final (exiting) forward or backward velocity vf .
In Figs. 8 (a) and (b) we represent the final velocity

in terms of the common field amplitude and the injection
velocity for the two values of α used in the analysis of sub-
section VA. As already suggested by the analysis of Figs.
2 and 3 where the transition from ponderomotive regimes

0.6 0.9
v0[α

−1/2]

0.0

50

A
w
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A
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−0.7 0 1

vf [α
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α = 0.90

,
0.6 0.9
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vf [α
−1/2]

(b)

α = 0.77

0.6 1.0
v0[α
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0.6
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−0.7 0 1

vf [α
−1/2]

reflecting

passing

accelerating

(c)

FIG. 8: Color graded maps for the final velocity, with in-
dependent variables indicated in the axes of the plots. In
panel (c) we take both waves with equal normalized ampli-
tudes Aw0 = Al0 = 25.

to trapping is imminent, one sees from the present Fig.
8 (a) that while for the larger value of α (= 0.9) trapping
is preceded by a ponderomotive regime of passing parti-
cles, for the smaller α (= 0.77) of panel (b), trapping is
mostly preceded by the reflective ponderomotive regime
where the final velocities are negative. We point out the
presence of less-than-effective discrete curves inside the
accelerating regions in Figs. 8 (a) and (b). The position
of these curves depends on the initial phase of the parti-
cle. Although the maximum velocity of the particle does
not depend on its initial phase, the final velocity does.

For a given value of the common field amplitude, there
is thus an important structural change in the trapping
patterns and subsequent resonant acceleration as the
phase velocity of the driver mode changes. We attempt
to represent this change in our last Fig. 8 (c), where
the color graded map for the final velocity is depicted in
terms of the injection velocity and of the phase-velocity
α for a given mode amplitude, which is chosen to be
Aw0 = Al0 = 25 here. One indeed notes that while for
small α’s there is direct transition from reflection to trap-
ping, for α’s larger than a critical value that lies around
α = 0.78, the reflective regime first turns into a passing
regime and only then, for larger values of the injection
velocity, trapping takes place.

Finally we extend the discussion on the model
parameters in a very brief way. First, the wig-
gler must be intense. Considering a magnetic
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field generated by super-conducting coils, one can
achieve magnetic fields Bw of magnitudes up to 10
Tesla.
If one then takes a wiggler spacing of λw ∼ 10

cm, a wiggler strength parameter of magnitude
Aw ∼ 100 is obtained. With λw ∼ 10 cm, consid-
ering the dimensionless phase-velocity vphase/c ≡√
α = 1/(1 + kw/kl) with kl,w ∼ 1/λl,w, and taking

α around 0.9 as discussed here, one would obtain
λl ∼ 5 mm. This sits at the upper-wavelength
edge of the far-infrared laser spectrum. Increas-
ingly larger values of α’s would select shorter and
shorter laser wavelengths, which would be like-
wise describable by the present formalism.
With σ ∼ 1000 along with the obtained wavevec-

tors, after reverting to dimensional variables we
estimate that a laser path and wave-particle in-
teraction length of the order of 5 meters would
suffice for full and efficient interaction. Under
these conditions of a long path with relatively
large laser wavelengths, constraints due to diffrac-
tion and spot sizes are relatively unimportant. A
summary can be seen in table I.

TABLE I: Summary of Parameters

α 0.9

Bw ∼ 10 Tesla

λw 10 cm

λl ∼ 5 mm

Length ∼ 5 m

VI. CONCLUSION

As mentioned in the Introduction, this paper has been
dedicated to extending ideas developed in a previous pa-
per, where efficient particle acceleration has been ob-
tained at the transitional phase between ponderomo-
tive and resonant regimes provided by slowly modulated
plasma waves. Here we replace the plasma waves with
an inverse free-electron laser scheme, in an attempt to
obtain the same accelerating efficiency through a more
stable system than the one usually associated with waves
in plasmas.
We have shown that acceleration is indeed equally ef-

ficient here. By means of a ponderomotive approxima-
tion based on a canonical Hamiltonian formalism that re-

produces key elements of the particle dynamics near the
wave-particle resonance, accurate results are obtained.
This accuracy cannot be obtained with the usual cycle
average of the Lagrangian approach. Analysis of these
results indicates that the ponderomotive force pulls par-
ticles toward resonance, and that once trapped by the res-
onances acceleration towards the speed of light is unim-
peded if laser and wiggler both have the same amplitude.

In a slight variation with respect to the case of plasma
waves, here particles are captured by the resonance be-
fore the peak of the slowly varying envelope of the high-
frequency carrier. As observed earlier, under these condi-
tions particles cannot be slung forward across the entire
potential hump because the wave crest ahead of the par-
ticle is slightly larger than the one behind. Particles are
therefore trapped in the resonant trough and energy gain
follows an adiabatic path towards the peak of the mod-
ulated drive where gain is maximum. Shortly after the
peak the adiabatic process reverses and particles start to
lose energy, so one should find a way to extract particles
at the envelope maximum.

One possible way to optimize extraction would be to
truncate the wiggler operation only up to x = 0. If the
wiggler is limited this way, particles in principle would be
ejected forward at x = 0 with no further energy loss. This
application is under current study and more conclusive
results shall be reported.

Self-consistent effects due to the wave and
particle interaction were not considered in the
present analysis. Nonlinear wave-particle self-
consistent dynamics involving large wave ampli-
tudes and very dense particle populations might
affect diffraction, refraction and proper tun-
ing between particles and the resonant velocity
formed by laser and wiggler. Self-consistency un-
der these conditions may be relevant and should
be analysed in future investigations.
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