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Standard map in magnetized relativistic systems: Fixed points and regular acceleration
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We investigate the concept of a standard map for the interaction of relativistic particles and electrostatic
waves of arbitrary amplitudes, under the action of external magnetic fields. The map is adequate for physical
settings where waves and particles interact impulsively, and allows for a series of analytical result to be exactly
obtained. Unlike the traditional form of the standard map, the present map is nonlinear in the wave amplitude
and displays a series of peculiar properties. Among these properties we discuss the relation involving fixed

points of the maps and accelerator regimes.
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I. INTRODUCTION

Wave-particle interaction has always attracted a great deal
of attention as an efficient way to particle acceleration and
particle heating. A wide range of applications indeed flour-
ishes, from heating and current drives in fusion devices [1,2],
to more alternative concepts like plasma based particle ac-
celerators [3] and non-neutral beams [4].

Wave-particle interaction is basically a nonlinear process
[5,6]. This means that in the usual scenarios of the interac-
tion one can expect to see regular and chaotic patterns inter-
wined in the appropriate phase spaces [7]. Regular regions
are useful for coherent acceleration while chaotic regions are
adequate for particle heating. The prevalence of one or an-
other type of region is a direct result of the strength of the
perturbations impinging on the particle motion.

As shown over the years, investigation of nonlinear wave-
particle interaction can be largely aided if area preserving
Hamiltonian maps can be constructed for the system under
study. Area preserving maps provide such a powerful tool in
the study of the nonlinear dynamics of Hamiltonian systems
because they yield a series of exact analytical results to work
with [7,8].

Among the large variety of area preserving maps, the
most prominent is perhaps the standard canonical map in
one-degree-of-freedom and its close variants [9,10]. The
standard map describes a large number of systems, among
which one can find the case of wave-particle nonlinear inter-
action where particles move under the action of electrostatic
fields [5,6]. Under these circumstances the map clearly
shows how appropriate resonant conditions give rise to effi-
cient acceleration mechanisms.

Maps can be constructed from the underlying Hamilto-
nians as one makes the assumption that the system is peri-
odically perturbed by impulsive kicks, followed by integra-
tion of the resulting canonical equations over one perturbing
period. Impulsive approximations adequately represent
pulsed perturbations, resulting from broad band spectra of
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counter propagating waves driven by nonlinear wave cou-
pling [11,12].

In the standard case, while one of the canonical variables
appears only in the interaction term of the original Hamil-
tonian, the other appears only in the free part. This peculiar
feature allows to show that one of the variables is constant
between the kicks and the other does not vary across a kick,
which is the key factor to simplify the final form of the
theory. As a further result, the map can be shown to be linear
in the wave amplitude. If one now takes another case of
interest where particles move under the action of an external
magnetic field, the canonical variables become entangled by
the field and can no longer be easily segregated into the free
and interaction terms of the corresponding Hamiltonian.
However, as will be shown, a set of convenient variable
changes allow for the construction of an exact map.

We shall focus on electrostatic perturbing modes propa-
gating perpendicularly to the external magnetic field. These
modes are frequently present and can be responsible for a
large amount of particle energization. In open boundary sys-
tems, traveling electrostatic waves have been shown to pro-
duce efficient coherent acceleration [1,13,14] as well as in-
coherent heating [15]. In closed systems, stationary modes
formed with counter propagating waves are the ones to be
considered. Closed systems encompass the cases of magneti-
cally confined plasma columns and beams, and support
waves with frequencies in the vicinity of the cyclotron fre-
quency [16,17]. Resonant cyclotronic interaction is also pos-
sible between lower hybrid modes and fast electrons when
the electronic cyclotron frequency decreases due to relativis-
tic effects [18]. Large resonant islands [19] will be shown to
form due to relativistic nonlinearities of the transverse par-
ticle motion with respect to the magnetic field, a feature of
relevance in accelerator regimes as discussed later on.

The central interest of the present paper is then to con-
struct the exact map for the dynamics of magnetized particles
under the action of perpendicular electrostatic waves. The
resulting map could be seen as the magnetized counterpart of
the classical standard map. Although related, we shall see
that both maps display very different structures: nonlineari-
ties in the dependence on the wave amplitude affects posi-
tioning of fixed points and the associated accelerating re-
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gimes of the magnetized case. Limits on the acceleration
efficiency of the magnetized case are discussed as well.

The paper is organized as follows: Sec. II is devoted to
the construction of the map, Sec. III to the analytical and
numerical investigation, and in Sec. IV we draw our conclu-
sions.

II. FROM THE MODEL TO THE NONLINEAR MAP

Consider a particle with charge g, mass m and perpen-
dicular canonical momentum p;, moving under the com-
bined action of a uniform magnetic field B=ByZ and a sta-
tionary electrostatic wave of wavevector k, period 7 and
amplitude A, lying along the x axis. Working with a set of
dimensionless  quantities, p,/mc—p,, qByx/mc—x,
(gBo/m)(t,T)—(¢,T), (1/mc*)(gBy/m)A—A, the dimen-
sionless Hamiltonian H— H/mc? governing the particle mo-
tion can be written as

H=\r1+p§+x2+A cos(kx)Y, 8(t - nT), (1)

where with no loss of generality we consider the canonical
momentum p,=0. We point out that even though the y com-
ponent of the canonical momentum is conserved and taken to
be zero, dy/dt is not zero and the motion is not one-
dimensional. ¢ is the speed of light and, as stated earlier, for
our purposes we focus on pulsed systems whose action is
represented by the periodic collection of delta functions.

At this point one must adopt a strategy to integrate the
dynamics generated by the Hamiltonian (1). To this end, we
note that particles are subjected to kicks whenever the time is
a multiple of the period 7. Between consecutive kicks, how-
ever, the one-degree-of-freedom dynamics is time indepen-
dent and integrable, thus representab_le in terms of action-
angle variables p,=\2I cos #, x=v2Isin # with constant
action /. For future purposes, one can promptly find the form
of the Hamiltonian written in terms of action-angle coordi-
nates. It reads

H=\1+21+A cos(k\2I sin ), 8(t—nT).  (2)

Across the kick, both I and 6 undergo abrupt variations
since both are present in the wave-particle coupling term.
However, in the original variables x,p, only p, changes
across the kick-x remains constant because p, is absent from
the coupling. That said, our approach is the following:

(i) we first define the action-angle variables just before the
nth kick: 1,,, 0,;

(ii) action and angle are then transformed to the original
cartesian variables via (x,,, pxn)=(\s"2ln sin 6,,V21, cos 6,);

(iii) changes across kick n are calculated in the cartesian
coordinates via Ax=0, Ap,=kA sin(kx,,);

(iv) immediately after the kick we write p;nE Py, +Ap,
and x;jxn +2Ax and change back to action-angle variables via
Ii=(p} +x,)/2, Gy=arctan(x;/p ).

(v) The last step is to propagate the preceding state
to that instant n+1 before the next kick via I,,,=I,,,
0= +T/N1+21,,,.
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Although the final composite map could be expressed
with similar degree of complexity in terms of cartesian co-
ordinates, use of action-angle variables is more convenient in
view of the fact that action is conserved in the absence of
perturbation.

The final result can be cast in the form of an explicit map
relating the dynamical states at kicks n and n+1,

1
L. = 5{21,, sin” 6, + {\rﬁ cos 6,

) 2
+ ESk sin(k\r’TI,, sin 0,,)] }, (3)

2421, sin 6, )
2\"27,, cos 6, + ek sin(k\/Z_In sin 6,)
T
+ ,= s
Vi+21,,

0,01 = arctan(

(4)

where for convenience we introduce € =2A. The map has the
noticeable feature of being fully explicit-from Eq. (3), I,.,; in
Eq. (4) can be written in terms of I, and 6,. In addition the
map Jacobian has unitary norm, which guarantees the sym-
pletic character of the theory. We also note that, in contrast to
the standard case, the map displays strong nonlinear depen-
dence on the wave amplitude. A linearized map, obtainable
only when € <<1, can be cast into the canonical form

I,=1,,- (1/\/5)8/(\"’% cos 6, cos(k\21,,; sin 8,), (5)

T ek sin 6, cos(kV21,,, sin 6,)
+ .

0..,=0 + ;
T e, V81,

(6)

The linear form can be naively obtained from the Hamil-
tonian (2) alone if across the kick one assumes #— 6, and
I—1,,q; our theory shows why these assumptions should be
this way.

III. ANALYTICAL AND NUMERICAL RESULTS

We are now in position to explore the properties of the
fully nonlinear map [Egs. (3) and (4)]. When € —0 the ac-
tion I becomes constant and the phase 6 advances steadily
according to

6,.,=0 +L (7)
I o

As mentioned earlier, we shall look into cases where both
periods are similar, since a variety of cases fall in this order-
ing category. Let us further narrow our focus on the main
resonance, the one for which each wave cycle corresponds to
a full orbital gyration of the magnetized particles. This case
corresponds to take 6,,,—6,=2, which sets the position of
the main resonance at
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FIG. 1. Nonlinear resonance: pendulumlike with k>=0.1 in (a),
and £k?>=0.83 in (b). Panel (c) details the positioning of the hyper-
bolic fixed point of panel (b) near 7/2. k=2 and T=27(1+1/15) in
all cases.

; Do4m ®)
res — 8772 .

Expression (8) is only an estimate that does not include any
effects resulting from the perturbing wave. Nevertheless, it
provides a first step to investigate the role of resonances in
the dynamical system. Recalling that the wave frequency is
measured in units of the cyclotron frequency gB,/m, when
wave and cyclotron frequencies coincide, T=2/1=27 and
I,,,—0. For larger values of the wave period 7, the reso-
nance moves toward higher values of the action, and for
smaller values the resonance cannot be realized for positive
values of the action. Importantly, when relativity is sup-
pressed with /—0 in Eq. (7), the phase advance becomes
independent of the action and one falls in a degenerate
theory where the resonant island is absent [7]. This feature
contrasts with the relativistic standard case where suppres-
sion of relativistic effects does not remove the main reso-
nance [11,12].

We now look into a case where the resonance is present in
the phase-space with the period T slightly larger than the
cyclotron period: T=2m(1+1/15)>27. We also consider
k=2 as a representative wavevector of the modes analyzed,
and display two distinct situations in Fig. 1: ek*=0.1 in panel
(a) and ek*=0.83 in panel (b). It will become clear later why
we work with the combination ek? instead of the wave am-
plitude & alone. In both cases the phase spaces are fairly
regular, but a remarkable fact distinguishes the panels apart.
While in (a) the resonance takes the usual pendulumlike
shape with elliptic and hyperbolic points approximately lo-
cated at the same level along the action axis, in panel (b) one
sees that the hyperbolic points move down to /=0 while the
elliptic point stays at the same original location. The rel-
evance of this feature lies in the possibility of particle accel-
eration from low initial energies. Indeed, while in panel (a)
particles launched with /=0 remain with small values of the
action, in panel (b) one sees that particles launched under the
same condition /=0 perform much larger excursions along
the island separatrix. Interestingly, the linearized map [Egs.
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(5) and (6)] yields the angular position of the two hyperbolic
points exactly at /2 and 37/2 for all values of . Close
examination of panel (b) shows however that this is only
approximate, as one sees that both points sit to right of co-
ordinates /2 and 3m/2, respectively. The region near
0=1r/2, in particular, is detailed in panel (c) where one can
see the positioning of the hyperbolic point-numerical analy-
sis reveals that it is located at 6=1.13X7w/2, 1=0.00157.
The intrincated nonlinear dependence of the full map [Egs.
(3) and (4)] on & displaces the hyperbolic points from their
approximate phases, which is something to consider if one
wishes to adjust wave-particle phase for optimum accelera-
tion.

Topology of Fig. 1 is similar in related contexts involving
time dependent but spatially uniform perturbations [20], al-
though the fully analytical map [Egs. (3) and (4)] reveals that
the hyperbolic points in both cases do not coincide.

Figure 1(b) also suggests that one way to improve the
acceleration efficiency would be to increase the mismatch
between cyclotron and wave frequency. According to the es-
timate of Eq. (8), larger wave periods would pull the reso-
nance upward, and if one could choose a sufficiently large &,
the hyperbolic points could still be brought down to /=0
enabling particles to coherently loop from small to large val-
ues of the action. There is however a natural limitation to this
outlined procedure, which arises from the loss of stability of
elliptic points as the wave amplitude & grows. In the case
under study, one can expect the accelerating mechanism to
work satisfactorily up to the point where the central point at
7 looses stability. Beyond that, one can expect the intrusion
of appreciable chaotic activity into the system with the con-
comitant loss of orbital coherence. It is true that even before
the elliptic point bifurcates chaos is present, but for the sake
of simplicity we take the bifurcation as indicating the limits
of regular regimes in the system. The condition we seek for
regular acceleration can be thus stated as the one associated
with periods T for which one can maneuver the control pa-
rameters such that the hyperbolic points touch the axis /=0
before the elliptic point bifurcates. Maximum, or optimum
acceleration can be achieved for the particular period
T=T,,, where touch down and bifurcation occur simulta-
neously.

To obtain the parameters for which hyperbolic (k) points
reach =0 we look for fixed points of Eq. (4) with periodicity
2 at =0, i.e., 6,,,=0,+27 with 6,= 6,(mod 27):

tan( 0]1)

T + arctan =0, + 2. 9)

1+ Eskz tan(6,)

As mentioned earlier, fixed points of Eq. (9) are not aligned
with @=7/2,37/2 as in the linearized version of map [Egs.
(3) and (4)]. Nevertheless, careful inspection of Eq. (9) along
with the use of trigonometric identities allows to find the
following solution for the fixed points:
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tan 6, =

Real solutions of expression (10) exist only when
e%k* tan(T) +8ek*—16 tan(7) =0, from which one obtains
the corresponding threshold for touch down (td),

(V1 + tan®(T) - 1). (11)

4
2y _
(8k%) 0= tan(T)

When T=2m(1+1/15), as used in Fig. 1 for instance,
(ek?),4=0.850 66; this is why we chose that particular value
of the product gk? in Fig. 1(b)—it is close to the touch down
limit.

As mentioned, one has regular acceleration only when
touch down occurs before the central fixed point at 6=
looses stability via a period doubling (pd) bifurcation. To
obtain the conditions for period doubling we first of all ob-
serve that analysis of Eq. (4) at #= allows to conclude that
result (8) is in fact exact, independently of the value of e.
Then, linear stability analysis of Eq. (4) at the fixed point
readily indicates that bifurcation occurs at

2
L (12)

2 —
(&= 22

We point out that from expressions (11) and (12) it becomes
apparent that the effective parameter controlling the pertur-
bative strength is the combination £k* and not the wave am-
plitude alone, as commented earlier.

The next step is to compare both thresholds furnished by
Egs. (11) and (12). This is done in Fig. 2 where one sees that
there is indeed a critical point in the plane ek® versus T,
where touch down and period doubling occur simulta-
neously. For values of the period 7 below the one at the
critical point, touch down occurs earlier than doubling, and
after the critical point the ordering is reversed. At the

10
period—doubling
8

ek’

touch—down

0
0 0.05 0.10 0.15 0.20 0.25 0.30
T2n — 1

FIG. 2. Comparison of the threshold curves for period doubling
and touch down. Labels respectively indicated. The black dot indi-
cates the point of optimum acceleration.

ek? tan(T) = Vtan(7) Velkt tan(7) + 8&k* — 16 tan(7)
2[ek* -2 tan(T)] ’

(10)

critical point one attains optimum conditions for regular
acceleration, as discussed earlier. The critical point period
can be numerically evaluated as T,,,~1.24 X2m. We also

pt
have (gk?),,=3.67843 and I,,=0.26469. This means
that the dimensionless momentum excursion reads

Px~\2(21,,)~ 1.03 which provides a significant amount of
acceleration v,=p,/ \/Tpf~ 0.72 especially when one looks
at ion dynamics. To obtain the estimate for maximum mo-
mentum we simply double the value of the action at the fixed
point, as suggested by the topology of Fig. 1(b), and make
use of expression (8) along with the relation between action-
angle and cartesian coordinates. &,,,~ 1, so we are beyond
the validity of linear approximation (5) and (6).

IV. CONCLUSIONS

To conclude, we developed and investigated an analytical
canonical map describing the relevant case of impulsive in-
teraction of waves and magnetized relativistic particles. In
contrast to the better known standard canonical case, the
present map is shown to be nonlinear in the wave amplitude,
which affects the positioning of fixed points. Also, special
regular orbits were shown to exist which can be used to
accelerate particles. These special orbits bifurcate to chaos
when the interaction parameter grows beyond a certain
threshold. The orbits and all the associated bifurcation pro-
cess are only present when nonlinear relativistic mass correc-
tion of particles is properly taken into account. If relativistic
effects are erroneously ignored, resonant islands are replaced
with KAM curves [20].

Comparing ours with similar settings, we initially recall
that topology of Fig. 1 resembles that of related contexts
involving time dependent but spatially uniform perturbations
[20], although the fully analytical map [Eqgs. (3) and (4)]
reveals different positioning of fixed points. We point out as
well that relativistic generalizations of the Karney problem
applied to the interaction of magnetized electrons and per-
pendicular electrostatic lower hybrid waves have also been
studied, with closer focus either on pendulumlike islands or
on waves with much larger than the relativistic cyclotron
frequencies [18]. Our problem here is more directed to the
resonant interaction and generation of the large distorted is-
land.
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