6,221 research outputs found

    Thermodynamics of two-colour QCD

    Get PDF
    We discuss the thermodynamics of two-colour QCD with four flavours of staggered quarks on 8^3x4 and 16^3x4 lattices. In our simulations we use the Naik action for the fermions and a (1,2) tree-level improved gauge action. We analyze the deconfinement and chiral phase transitions for four different quark masses (m=0.1,0.05,0.025,0.015). Contrary to three-colour QCD the peak in the Polyakov loop susceptibility decreases with decreasing quark mass. This reflects an early breaking of the string in the heavy quark potential, which we verify explicitly by calculating the heavy quark potential at finite temperature using Polyakov loop correlations.Comment: LATTICE98(hightemp), 3 pages, LaTeX2e File, 5 EPS-figures, espcrc2.st

    Classical bifurcations and entanglement in smooth Hamiltonian system

    Get PDF
    We study entanglement in two coupled quartic oscillators. It is shown that the entanglement, as measured by the von Neumann entropy, increases with the classical chaos parameter for generic chaotic eigenstates. We consider certain isolated periodic orbits whose bifurcation sequence affects a class of quantum eigenstates, called the channel localized states. For these states, the entanglement is a local minima in the vicinity of a pitchfork bifurcation but is a local maxima near a anti-pitchfork bifurcation. We place these results in the context of the close connections that may exist between entanglement measures and conventional measures of localization that have been much studied in quantum chaos and elsewhere. We also point to an interesting near-degeneracy that arises in the spectrum of reduced density matrices of certain states as an interplay of localization and symmetry.Comment: 7 pages, 6 figure

    Fluctuations in the vicinity of the phase transition line for two flavor QCD

    Full text link
    We study the susceptibilities of quark number, isospin number and electric charge in numerical simulations of lattice QCD at high temperature and density. We discuss the equation of state for 2 flavor QCD at non-zero temperature and density. Derivatives of lnZ\ln Z with respect to quark chemical potential (μq)(\mu_q) are calculated up to sixth order. From this Taylor series, the susceptibilities are estimated as functions of temperature and μq\mu_q. Moreover, we comment on the hadron resonance gas model, which explains well our simulation results below TcT_c.Comment: 3 pages, 5 figures, Talk presented at Lattice2004(non-zero

    Scaling behavior of quark propagator in full QCD

    Get PDF
    We study the scaling behavior of the quark propagator on two lattices with similar physical volume in Landau gauge with 2+1 flavors of dynamical quarks in order to test whether we are close to the continuum limit for these lattices. We use configurations generated with an improved staggered (``Asqtad'') action by the MILC collaboration. The calculations are performed on 283×9628^3\times 96 lattices with lattice spacing a=0.09a = 0.09 fm and on 203×6420^3\times 64 lattices with lattice spacing a=0.12a = 0.12 fm. We calculate the quark mass function, M(q2)M(q^2), and the wave-function renormalization function, Z(q2)Z(q^2), for a variety of bare quark masses. Comparing the behavior of these functions on the two sets of lattices we find that both Z(q2)Z(q^2) and M(q2)M(q^2) show little sensitivity to the ultraviolet cutoff.Comment: 6 pages, 5 figure

    Investigating interaction-induced chaos using time-dependent density functional theory

    Full text link
    Systems whose underlying classical dynamics are chaotic exhibit signatures of the chaos in their quantum mechanics. We investigate the possibility of using time-dependent density functional theory (TDDFT) to study the case when chaos is induced by electron-interaction alone. Nearest-neighbour level-spacing statistics are in principle exactly and directly accessible from TDDFT. We discuss how the TDDFT linear response procedure can reveal the mechanism of chaos induced by electron-interaction alone. A simple model of a two-electron quantum dot highlights the necessity to go beyond the adiabatic approximation in TDDFT.Comment: 8 pages, 4 figure

    Biosensing platform combining label-free and labelled analysis using Bloch surface waves

    Get PDF
    Bloch surface waves (BSW) propagating at the boundary of truncated photonic crystals (1D-PC) have emerged as an attractive approach for label-free sensing in plasmon-like sensor configurations. Due to the very low losses in such dielectric thin film stacks, BSW feature very low angular resonance widths compared to the surface plasmon resonance (SPR) case. Besides label-free operation, the large field enhancement and the absence of quenching allow utilizing BSW coupled fluorescence detection to additionally sense the presence of fluorescent labels. This approach can be adapted to the case of angularly resolved resonance detection, thus giving rise to a combined label-free / labelled biosensor platform. It features a parallel analysis of multiple spots arranged as a one-dimensional array inside a microfluidic channel of a disposable chip. Application of such a combined biosensing approach to the detection of the Angiopoietin-2 cancer biomarker in buffer solutions is reported

    More evidence of localization in the low-lying Dirac spectrum

    Full text link
    We have extended our computation of the inverse participation ratio of low-lying (asqtad) Dirac eigenvectors in quenched SU(3). The scaling dimension of the confining manifold is clearer and very near 3. We have also computed the 2-point correlator which further characterizes the localization.Comment: presented at Lattice2005(Topology and Confinement), Dublin, July 25-30, 2005, 6 pages, 3 figures, to appear in Proceedings of Scienc

    String breaking in Lattice QCD

    Full text link
    The separation of a heavy quark and antiquark pair leads to the formation of a tube of flux, or string, which should break in the presence of light quark-antiquark pairs. This expected zero temperature phenomenon has proven elusive in simulations of lattice QCD. We present simulation results that show that the string does break in the confining phase at nonzero temperature.Comment: LATTICE98(hightemp), 3 pages, 4 figures, LaTe

    Beyond the First Recurrence in Scar Phenomena

    Full text link
    The scarring effect of short unstable periodic orbits up to times of the order of the first recurrence is well understood. Much less is known, however, about what happens past this short-time limit. By considering the evolution of a dynamically averaged wave packet, we show that the dynamics for longer times is controlled by only a few related short periodic orbits and their interplay.Comment: 4 pages, 4 Postscript figures, submitted to Phys. Rev. Let

    The QCD phase transition at high temperature and low density

    Full text link
    We study the thermal properties of QCD in the presence of a small quark chemical potential μ\mu. Derivatives of the phase transition point with respect to μ\mu are computed at μ=0\mu=0 for 2 and 3 flavors of p-4 improved staggered fermions on a 163×416^3\times4 lattice. Moreover we contrast the case of isoscalar and isovector chemical potentials, quantify the effect of μ0\mu\not=0 on the equation of state, and comment on the screening effect by dynamical quarks and the complex phase of the fermion determinant in QCD with μ0\mu\not=0.Comment: Lattice2002(nonzerot), 3 pages, 2 figure
    corecore