42 research outputs found

    Biocontrol of larval mosquitoes by Acilius sulcatus (Coleoptera: Dytiscidae)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Problems associated with resistant mosquitoes and the effects on non-target species by chemicals, evoke a reason to find alternative methods to control mosquitoes, like the use of natural predators. In this regard, aquatic coleopterans have been explored less compared to other insect predators. In the present study, an evaluation of the role of the larvae of <it>Acilius sulcatus </it>Linnaeus 1758 (Coleoptera: Dytiscidae) as predator of mosquito immatures was made in the laboratory. Its efficacy under field condition was also determined to emphasize its potential as bio-control agent of mosquitoes.</p> <p>Methods</p> <p>In the laboratory, the predation potential of the larvae of <it>A. sulcatus </it>was assessed using the larvae of <it>Culex quinquefasciatus </it>Say 1823 (Diptera: Culicidae) as prey at varying predator and prey densities and available space. Under field conditions, the effectiveness of the larvae of <it>A. sulcatus </it>was evaluated through augmentative release in ten cemented tanks hosting immatures of different mosquito species at varying density. The dip density changes in the mosquito immatures were used as indicator for the effectiveness of <it>A. sulcatus </it>larvae.</p> <p>Results</p> <p>A single larva of <it>A. sulcatus </it>consumed on an average 34 IV instar larvae of <it>Cx. quinquefasciatus </it>in a 24 h period. It was observed that feeding rate of <it>A. sulcatus </it>did not differ between the light-on (6 a.m. – 6 p.m.), and dark (6 p.m. – 6 a.m.) phases, but decreased with the volume of water i.e., space availability. The prey consumption of the larvae of <it>A. sulcatus </it>differed significantly (P < 0.05) with different prey, predator and volume combinations, revealed through univariate ANOVA. The field study revealed a significant decrease (p < 0.05) in larval density of different species of mosquitoes after 30 days from the introduction of <it>A. sulcatus </it>larvae, while with the withdrawal, a significant increase (p < 0.05) in larval density was noted indicating the efficacy of <it>A. sulcatus </it>in regulating mosquito immatures. In the control tanks, mean larval density did not differ (p > 0.05) throughout the study period.</p> <p>Conclusion</p> <p>the larvae of the dytiscid beetle <it>A. sulcatus </it>proved to be an efficient predator of mosquito immatures and may be useful in biocontrol of medically important mosquitoes.</p

    Decadal-scale litter manipulation alters the biochemical and physical character of tropical forest soil carbon

    Get PDF
    © 2018 Elsevier Ltd Climate change and rising atmospheric carbon dioxide (CO2) concentrations are likely to alter tropical forest net primary productivity (NPP), potentially affecting soil C storage. We examined biochemical and physical changes in soil C fractions in a humid tropical forest where experimental litter manipulation changed total soil C stocks. We hypothesized that: (1.) low-density soil organic C (SOC) fractions are more responsive to altered litter inputs than mineral-associated SOC, because they cycle relatively rapidly. (2.) Any accumulation of mineral-associated SOC with litter addition is relatively stable (i.e. low leaching potential). (3.) Certain biomolecules, such as waxes (alkyl) and proteins (N-alkyl), form more stable mineral-associations than other biomolecules in strongly weathered soils. A decade of litter addition and removal affected bulk soil C content in the upper 5 cm by +32% and −31%, respectively. Most notably, C concentration in the mineral-associated SOC fraction was greater in litter addition plots relative to controls by 18% and 28% in the dry and wet seasons, respectively, accounting for the majority of greater bulk soil C stock. Radiocarbon and leaching analyses demonstrated that the greater mineral-associated SOC in litter addition plots consisted of new and relatively stable C, with only 3% of mineral-associated SOC leachable in salt solution. Solid-state13C NMR spectroscopy indicated that waxes (alkyl C) and microbial biomass compounds (O-alkyl and N-alkyl C) in mineral-associated SOC are relatively stable, whereas plant-derived compounds (aromatic and phenolic C) are lost from mineral associations on decadal timescales. We conclude that changes in tropical forest NPP will alter the quantity, biochemistry, and stability of C stored in strongly weathered tropical soils

    Molecular dynamics simulation of humic substances

    Get PDF
    © 2014, Orsi. Humic substances (HS) are complex mixtures of natural organic material which are found almost everywhere in the environment, and particularly in soils, sediments, and natural water. HS play key roles in many processes of paramount importance, such as plant growth, carbon storage, and the fate of contaminants in the environment. While most of the research on HS has been traditionally carried out by conventional experimental approaches, over the past 20 years complementary investigations have emerged from the application of computer modeling and simulation techniques. This paper reviews the literature regarding computational studies of HS, with a specific focus on molecular dynamics simulations. Significant achievements, outstanding issues, and future prospects are summarized and discussed

    The study of atmospheric ice-nucleating particles via microfluidically generated droplets

    Get PDF
    Ice-nucleating particles (INPs) play a significant role in the climate and hydrological cycle by triggering ice formation in supercooled clouds, thereby causing precipitation and affecting cloud lifetimes and their radiative properties. However, despite their importance, INP often comprise only 1 in 10³–10⁶ ambient particles, making it difficult to ascertain and predict their type, source, and concentration. The typical techniques for quantifying INP concentrations tend to be highly labour-intensive, suffer from poor time resolution, or are limited in sensitivity to low concentrations. Here, we present the application of microfluidic devices to the study of atmospheric INPs via the simple and rapid production of monodisperse droplets and their subsequent freezing on a cold stage. This device offers the potential for the testing of INP concentrations in aqueous samples with high sensitivity and high counting statistics. Various INPs were tested for validation of the platform, including mineral dust and biological species, with results compared to literature values. We also describe a methodology for sampling atmospheric aerosol in a manner that minimises sampling biases and which is compatible with the microfluidic device. We present results for INP concentrations in air sampled during two field campaigns: (1) from a rural location in the UK and (2) during the UK’s annual Bonfire Night festival. These initial results will provide a route for deployment of the microfluidic platform for the study and quantification of INPs in upcoming field campaigns around the globe, while providing a benchmark for future lab-on-a-chip-based INP studies

    Preservation of fire-derived carbon compounds and sorptive stabilisation promote the accumulation of organic matter in black soils of the Southern Alps

    Full text link
    Cryptopodzols are black soils that occur under forests dominated by chestnut trees (Castanea sativa) in Southern Switzerland. Their soil organic carbon (SOC) stocks reach an average of 150 t C ha-1 and are thus among the highest of European forest soils. We investigated the processes leading to the accumulation and stabilisation of SOC in these soils by analysing three Cryptopodzols and one Cambisol for charred organic matter content (macrocharcoal and BPCA), the amounts of Fe and Al, and the colour and SOC content in bulk soil and density fractions. The results showed that charred organic matter produced by frequent ␣res in the area for more than 10,000 years is highly abundant in Cryptopodzols: the stocks of macrocharcoal and BPCA-C amount to up to 31 t ha-1 and 17 t ha-1, respectively. These high amounts of charred organic matter are responsible for the dark soil colour and high SOC concentrations that are, however, also closely related to Fep and Alp concentrations. We concluded that the occurrence of charcoal across the whole pro␣les of Cryptopodzols seems to be the dominating factor, although both the formation of organo-metallic or organo-mineral complexes in the subsoil and the high abundance and stability of charred organic matter are responsible for the high SOC stocks in Cryptopodzols

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Rapid transfer of <sup>15</sup>N from labeled beech leaf litter to functional soil organic matter fractions in a Rendzic Leptosol.

    No full text
    Our main objective was to trace and to quantify the stabilization of nitrogen released from litter decomposition in different functional soil organic matter fractions. To identify the fate of nitrogen in a free-range experiment, 15N-labeled beech litter was deposited on the bare soil surface of three 2&nbsp;m&nbsp;&times;&nbsp;2&nbsp;m plots on a Rendzic Leptosol under beech (Fagus sylvatica L.) with mull humus form near Tuttlingen (Swabian Jura, Germany). The 15N composition of bulk soil and soil fractions was monitored for three years by sampling the litter layer and the Ah horizon (0&ndash;5, 5&ndash;10&nbsp;cm) after 140, 507, and 876&nbsp;d. A&nbsp;combined density and particle size fractionation procedure allowed the isolation of different functional soil organic matter fractions: free light fraction, occluded organic matter, and organo-mineral associations. The first flush in the 15N enrichment was observed in the bulk soil within 140&nbsp;d, due to plant debris transferred to the free light fraction by probably bioturbation and soluble compounds being leached from the litter directly to the clay fractions. The observed rates within the first 140&nbsp;d indicated a quick transfer of 15N-enriched compounds from litter into the free light fraction, with a rate of 0.07&nbsp;&mu;g&nbsp;kg&minus;1&nbsp;d&minus;1, and to the clay fractions, with a rate of 0.31&nbsp;&mu;g&nbsp;kg&minus;1&nbsp;d&minus;1. In contrast, transfer to the occluded light fractions was delayed, with rates of 0.01&nbsp;&mu;g&nbsp;kg&minus;1&nbsp;d&minus;1 (&gt;20&nbsp;&mu;m) and 0.001&nbsp;&mu;g&nbsp;kg&minus;1&nbsp;d&minus;1 (&lt;20&nbsp;&mu;m), respectively. After 876&nbsp;d, we recovered 9% of the added label in the 0&ndash;10&nbsp;cm soil horizon, of which more than 4% was found in the organo-mineral fraction (0&ndash;5&nbsp;cm), nearly 3% in the light fractions (0&ndash;5&nbsp;cm), and another 2% unspecified in the bulk soil of 5&ndash;10&nbsp;cm depth. We therefore conclude that the clay fractions act as the main sink for the recovered 15N. The rapid incorporation and the high preservation of 15N in the clay fractions revealed the dominant role of organo-mineral associations in the stabilization of nitrogen in the investigated soil

    Prolonged summer droughts retard soil N processing and stabilization in organo-mineral fractions.

    No full text
    Prolonged summer droughts are projected to occur as a consequence of climate change in Central Europe. The resulting reduced soil water availability may lead to alterations in rates of soil processes such as nitrogen partitioning among soil organic matter fractions and stabilization within soil. To study the effect of climate change-induced drought on (1) the distribution of nitrogen among soil organic matter fractions and (2) nitrogen stabilization, we performed a space-for-time climate change experiment. We transferred intact plant&ndash;soil&ndash;microbe mesocosms of a Rendzic Leptosol with a young beech tree from a slope with northwestern exposure in southern Germany characterized by a cool-moist microclimate across a narrow valley to a slope with southwestern exposure with a warm-dry microclimate, which reflects projected future climatic conditions. A control transfer was also done on the northwest-facing slope within the same area of origin. We combined a homogenous 15N labeling approach using ammonium nitrate with a physical fractionation procedure and chemical soil extraction protocols. Our aim was to follow the partitioning of 15N in different soil organic matter fractions, i.e. light fractions, organo-mineral fractions, and extractable soil fractions including microbial biomass, ammonium, nitrate, and dissolved organic nitrogen. Within less than one growing season, we observed a modified partitioning of recently applied inorganic 15N between different soil fractions in relation to drier summer conditions, with attenuated nitrogen turnover under drought and consequently significantly higher 15N concentrations in the relatively labile light fractions. We ascribed this effect to a decelerated mineralization immobilization turnover. We conclude that prolonged summer droughts may alter the stabilization dynamics because the induced inactivity of microorganisms may reduce the transfer of nitrogen to stabilization pathways. A retarded stabilization in organo-mineral associations enhances the risk of nitrogen losses during extreme rainfall events, which are projected to increase in the 21st century predicted by future climate change scenarios for Central Europe
    corecore