93 research outputs found

    Structure of the silicon vacancy in 6H-SiC after annealing identified as the carbon vacancy–carbon antisite pair

    Get PDF
    We investigated radiation-induced defects in neutron-irradiated and subsequently annealed 6H-silicon carbide (SiC) with electron paramagnetic resonance (EPR), the magnetic circular dichroism of the absorption (MCDA), and MCDA-detected EPR (MCDA-EPR). In samples annealed beyond the annealing temperature of the isolated silicon vacancy we observed photoinduced EPR spectra of spin S=1 centers that occur in orientations expected for nearest neighbor pair defects. EPR spectra of the defect on the three inequivalent lattice sites were resolved and attributed to optical transitions between photon energies of 999 and 1075 meV by MCDA-EPR. The resolved hyperfine structure indicates the presence of one single carbon nucleus and several silicon ligand nuclei. These experimental findings are interpreted with help of total energy and spin density data obtained from the standard local-spin density approximation of the density-functional theory, using relaxed defect geometries obtained from the self-consistent charge density-functional theory based tight binding scheme. We have checked several defect models of which only the photoexcited spin triplet state of the carbon antisite–carbon vacancy pair (CSi-VC) in the doubly positive charge state can explain all experimental findings. We propose that the (CSi-VC) defect is formed from the isolated silicon vacancy as an annealing product by the movement of a carbon neighbor into the vacancy

    Polarity in GaN and ZnO: Theory, measurement, growth, and devices

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Rev. 3, 041303 (2016) and may be found at https://doi.org/10.1063/1.4963919.The polar nature of the wurtzite crystalline structure of GaN and ZnO results in the existence of a spontaneous electric polarization within these materials and their associated alloys (Ga,Al,In)N and (Zn,Mg,Cd)O. The polarity has also important consequences on the stability of the different crystallographic surfaces, and this becomes especially important when considering epitaxial growth. Furthermore, the internal polarization fields may adversely affect the properties of optoelectronic devices but is also used as a potential advantage for advanced electronic devices. In this article, polarity-related issues in GaN and ZnO are reviewed, going from theoretical considerations to electronic and optoelectronic devices, through thin film, and nanostructure growth. The necessary theoretical background is first introduced and the stability of the cation and anion polarity surfaces is discussed. For assessing the polarity, one has to make use of specific characterization methods, which are described in detail. Subsequently, the nucleation and growth mechanisms of thin films and nanostructures, including nanowires, are presented, reviewing the specific growth conditions that allow controlling the polarity of such objects. Eventually, the demonstrated and/or expected effects of polarity on the properties and performances of optoelectronic and electronic devices are reported. The present review is intended to yield an in-depth view of some of the hot topics related to polarity in GaN and ZnO, a fast growing subject over the last decade

    In situ size sorting in CVD synthesis of Si microspheres

    Get PDF
    [EN] Silicon microspheres produced in gas-phase by hot-wall CVD offer unique quality in terms of sphericity, surface smoothness, and size. However, the spheres produced are polydisperse in size, which typically range from 0.5 mu m to 5 mu m. In this work we show through experiments and calculations that thermophoretic forces arising from strong temperature gradients inside the reactor volume effectively sort the particles in size along the reactor. These temperature gradients are shown to be produced by a convective gas flow. The results prove that it is possible to select the particle size by collecting them in a particular reactor region, opening new possibilities towards the production by CVD of size-controlled high-quality silicon microspheres.The authors acknowledge financial support from the following projects: ENE2013-49984-EXP, MAT2012-35040, MAT2015-69669-P and ESP2014-54256-C4-2-R of the Spanish Ministry of Economy and Competitiveness (MINECO), and PROMETEOII/2014/026 of the Regional Valencian Government.Garín Escrivá, M.; Fenollosa Esteve, R.; Kowalski, L. (2016). In situ size sorting in CVD synthesis of Si microspheres. Scientific Reports. 6:1-10. https://doi.org/10.1038/srep38719S110

    Protease Activated Receptor Signaling Is Required for African Trypanosome Traversal of Human Brain Microvascular Endothelial Cells

    Get PDF
    Human African trypanosomiasis, or sleeping sickness, occurs when single-cell trypanosome protozoan parasites spread from the blood to brain over the blood-brain barrier (BBB). This barrier is composed of brain microvascular endothelial cells (BMECs) especially designed to keep pathogens out. Safe drugs for treating sleeping sickness are lacking and alternative treatments are urgently required. Using our human BMEC BBB model, we previously found that a parasite protease, brucipain, induced calcium activation signals that allowed this barrier to open up to parasite crossing. Because human BMECs express protease-activated receptors (PARs) that trigger calcium signals in BMECs, we hypothesized a functional link between parasite brucipain and BMEC PARs. Utilizing RNA interference to block the production of one type of PAR called PAR-2, we hindered the ability of trypanosomes to both open up and cross human BMECs. Using gene-profiling methods to interrogate candidate BMEC pathways specifically triggered by brucipain, several pathways that potentially link brain inflammatory processes were identified, a finding congruent with the known role of PAR-2 as a mediator of inflammation. Overall, our data support a role for brucipain and BMEC PARs in trypanosome BBB transmigration, and as potential triggers for brain inflammation associated with the disease
    • …
    corecore