572 research outputs found

    Quantum Eigenvector Continuation for Chemistry Applications

    Full text link
    A typical task for classical and quantum computing in chemistry is finding a potential energy surface (PES) along a reaction coordinate, which involves solving the quantum chemistry problem for many points along the reaction path. Developing algorithms to accomplish this task on quantum computers has been an active area of development, yet finding all the relevant eigenstates along the reaction coordinate remains a difficult problem, and determining PESs is thus a costly proposal. In this paper, we demonstrate the use of a eigenvector continuation -- a subspace expansion that uses a few eigenstates as a basis -- as a tool for rapidly exploring potential energy surfaces. We apply this to determining the binding PES or torsion PES for several molecules of varying complexity. In all cases, we show that the PES can be captured using relatively few basis states; suggesting that a significant amount of (quantum) computational effort can be saved by making use of already calculated ground states in this manner.Comment: 13 pages, 8 figures, 3 pages of appendi

    Positron annihilation lifetime spectroscopy of ZnO bulk samples

    Get PDF
    In order to gain a further insight into the knowledge of point defects of ZnO, positron annihilation lifetime spectroscopy was performed on bulk samples annealed under different atmospheres. The samples were characterized at temperatures ranging from 10 to 500 K. Due to difficulties in the conventional fitting of the lifetime spectra caused by the low intensity of the defect signals, we have used an alternative method as a solution to overcome these difficulties and resolve all the lifetime components present in the spectra. Two different vacancy-type defects are identified in the samples: Zn vacancy complexes (VZn−X) and vacancy clusters consisting of up to five missing Zn-O pairs. In addition to the vacancies, we observe negative-ion-type defects, which are tentatively attributed to intrinsic defects in the Zn sublattice. The effect of the annealing on the observed defects is discussed. The concentrations of the VZn−X complexes and negative-ion-type defects are in the 0.2–2 ppm range, while the cluster concentrations are 1–2 orders of magnitude lower.Peer reviewe

    Positron annihilation lifetime spectroscopy of ZnO bulk samples

    Get PDF
    In order to gain a further insight into the knowledge of point defects of ZnO, positron annihilation lifetime spectroscopy was performed on bulk samples annealed under different atmospheres. The samples were characterized at temperatures ranging from 10 to 500 K. Due to difficulties in the conventional fitting of the lifetime spectra caused by the low intensity of the defect signals, we have used an alternative method as a solution to overcome these difficulties and resolve all the lifetime components present in the spectra. Two different vacancy-type defects are identified in the samples: Zn vacancy complexes (VZn−X) and vacancy clusters consisting of up to five missing Zn-O pairs. In addition to the vacancies, we observe negative-ion-type defects, which are tentatively attributed to intrinsic defects in the Zn sublattice. The effect of the annealing on the observed defects is discussed. The concentrations of the VZn−X complexes and negative-ion-type defects are in the 0.2–2 ppm range, while the cluster concentrations are 1–2 orders of magnitude lower.Peer reviewe

    Localized versus delocalized states: Photoluminescence from electrochemically synthesized ZnO nanowires

    Get PDF
    We analyze the near-band-edge photoluminescence of electrochemically deposited ZnO nanowires and directly correlate the photoluminescence properties with the carrier concentration in the nanowires as determined from electrochemical impedance spectroscopy. We find a donor density of 81019 cm−3 in the as-deposited nanowires and show that the near-band-edge emission results from band-to-band recombination processes delocalized states. A photoluminescence band centered at 3.328 eV scales with the diameter of the nanowires and is assigned to recombination processes involving surface states. We show that annealing at 500 °C in air reduces the donor density in the nanowires by more than one order of magnitude, leading to sharp excitonic transitions in the electrochemically deposited nanowire

    The Si + SO2 collision and an extended network of neutral–neutral reactions between silicon and sulphur bearing species

    Get PDF
    International audienceThe Si + SO2 reaction is investigated to verify its impact on the abundances of molecules with astrochemical interest, such as SiS, SiO, SO, and others. According to our results Si(3P) and SO2 react barrierlessly yielding only the monoxides SO and SiO as products. No favourable pathway has been found leading to other products, and this reaction should not contribute to SiS abundance. Furthermore, it is predicted that SiS is stable in collisions with O2, and that S(3P) + SiO2 and O(3P)+OSiS will also produce SO + SiO. Using these results and gathering further experimental and computational data from the literature, we provide an extended network of neutral-neutral reactions involving Si- and S-bearing molecules. The effects of these reactions were examined in a protostellar shock model, using the NAUTILUS gas-grain code. This consisted in simulating the physicochemical conditions of a shocked gas evolving from (i) primeval cold core, (ii) the shock region itself, (iii) and finally the gas bulk conditions after the passage of the shock. Emphasizing on the cloud ages and including systematically these chemical reactions, we found that [SiS/H2] can be of the order of ~10-8 in shocks that evolves from clouds of t = 1 × 106 yr, whose values are mostly affected by the SiS + O \longrightarrowSiO + S reaction. Perspectives on further models along with observations are discussed in the context of sources harbouring molecular outflows

    Fullerene-Based Materials as Hole-Transporting/Electron Blocking Layers. Applications in Perovskite Solar Cells

    Get PDF
    Here we report for the first time an efficient fullerenebased compound, FU7, able to act as Hole-Transporting Material (HTM) and electron blocking contact. It has been applied on perovskite solar cells (PSCs), obtaining 0.81 times the efficiency of PSCs with the standard HTM, spiro-OMeTAD, with the additional advantage that this performance is reached without any additive introduced in the HTM layer. Moreover, as a proof of concept, we have described for the first time efficient PSCs where both selective contacts are fullerene derivatives, to obtain unprecedented “fullerene sandwich” PSCs

    Cubic Microcontainers Improve In Situ Colonic Mucoadhesion and Absorption of Amoxicillin in Rats

    Get PDF
    An increased interest in colonic drug delivery has led to a higher focus on the design of delivery devices targeting this part of the gastrointestinal tract. Microcontainers have previously facilitated an increase in oral bioavailability of drugs. The surface texture and shape of microcontainers have proven to influence the mucoadhesion ex vivo. In the present work, these findings were further investigated using an in situ closed-loop perfusion technique in the rat colon, which allowed for simultaneous evaluation of mucoadhesion of the microcontainers as well as drug absorption. Cylindrical, triangular and cubic microcontainers, with the same exterior surface area, were evaluated based on in vitro release, in situ mucoadhesion and in situ absorption of amoxicillin. Additionally, the mucoadhesion of empty cylindrical microcontainers with and without pillars on the top surface was investigated. From the microscopy analysis of the colon sections after the in situ study, it was evident that a significantly higher percentage of cubic microcontainers than cylindrical microcontainers adhered to the intestinal mucus. Furthermore, the absorption rate constants and blood samples indicated that amoxicillin in cubic microcontainers was absorbed more readily than when cylindrical or triangular microcontainers were dosed. This could be due to a higher degree of mucoadhesion for these particular microcontainers

    Tumour-derived alkaline phosphatase regulates tumour growth, epithelial plasticity and disease-free survival in metastatic prostate cancer

    Get PDF
    BACKGROUND: Recent evidence suggests that bone-related parameters are the main prognostic factors for overall survival in advanced prostate cancer (PCa), with elevated circulating levels of alkaline phosphatase (ALP) thought to reflect the dysregulated bone formation accompanying distant metastases. We have identified that PCa cells express ALPL, the gene that encodes for tissue nonspecific ALP, and hypothesised that tumour-derived ALPL may contribute to disease progression. METHODS: Functional effects of ALPL inhibition were investigated in metastatic PCa cell lines. ALPL gene expression was analysed from published PCa data sets, and correlated with disease-free survival and metastasis. RESULTS: ALPL expression was increased in PCa cells from metastatic sites. A reduction in tumour-derived ALPL expression or ALP activity increased cell death, mesenchymal-to-epithelial transition and reduced migration. Alkaline phosphatase activity was decreased by the EMT repressor Snail. In men with PCa, tumour-derived ALPL correlated with EMT markers, and high ALPL expression was associated with a significant reduction in disease-free survival. CONCLUSIONS: Our studies reveal the function of tumour-derived ALPL in regulating cell death and epithelial plasticity, and demonstrate a strong association between ALPL expression in PCa cells and metastasis or disease-free survival, thus identifying tumour-derived ALPL as a major contributor to the pathogenesis of PCa progression.British Journal of Cancer advance online publication, 22 December 2016; doi:10.1038/bjc.2016.402 www.bjcancer.com
    corecore