1,395 research outputs found

    Laparoscopic repair of a large interstitially incarcerated inguinal hernia.

    Get PDF
    A 68 year old female presented for elective repair of an abdominal wall hernia. Preoperative CT imaging revealed a right inguinal hernia defect with hernia contents coursing cephalad between the external and internal abdominal oblique muscles. This was consistent with an interstitial inguinal hernia, a rare entity outside of post- traumatic hernias. At operation the hernia contents were reduced laparoscopically. The hernia was then repaired by transitioning to the totally extraperitoneal (TEP) approach using a 15cm X 15cm piece of polyester mesh. The patient had an uneventful recovery. Interstitial hernias are rare, difficult to diagnose and potentially dangerous if left untreated. There is no consensus on the ideal repair of these unique hernias. This represents a minimally invasive repair of an unusual hernia, with a novel approach to diagnose and manage the hernia and its redundant sac

    The asymmetry of European integration: or why the EU cannot be a "Social Market Economy"

    Get PDF
    "Judge-made law has played a crucial role in the process of European integration. In the vertical dimension, it has greatly reduced the range of autonomous policy choices in the member states, and it has helped to expand the reach of European competences. At the same time, however, 'Integration through Law' does have a liberalizing and deregulatory impact on the socioeconomic regimes of EU member states. This effect is generally compatible with the status quo in liberal market economies, but it tends to undermine the institutions and policy legacies of Continental and Scandinavian social market economies. Given the high consensus requirements of European legislation, this structural asymmetry cannot be corrected through political action at the European level." (author's abstract

    Quantifying the Impacts of Subpixel Reflectance Variability on Cloud Optical Thickness and Effective Radius Retrievals Based On HighResolution ASTER Observations

    Get PDF
    TOOLS SHAREAbstractRecently, Zhang et al. (2016) presented a mathematical framework based on a secondorder Taylor series expansion in order to quantify the planeparallel homogeneous bias (PPHB) in cloud optical thickness () and effective droplet radius (r(sub eff)) retrieved from the bispectral solar reflective method. This study provides observational validation of the aforementioned framework, using highresolution reflectance observations from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) over 48 marine boundary layer cloud scenes. ASTER reflectances at a horizontal resolution of 30 m are aggregated up to a scale of 1,920 m, providing retrievals of and r(sub eff) at different spatial resolutions. A comparison between the PPHB derived from these retrievals and the predicted PPHB from the mathematical framework reveals a good agreement with correlation coefficients of r > 0.97 (for ) and r > 0.79 (for r(sub eff)). To test the feasibility of PPHB predictions for present and future satellite missions, a scale analysis with varying horizontal resolutions of the subpixel and pixellevel observations is performed, followed by tests of corrections with only limited observational highresolution data. It is shown that for reasonably thick clouds with a mean subpixel larger than 5, correlations between observed and predicted PPHB remain high, even if the number of available subpixels decreases or just a single band provides the information about subpixel reflectance variability. Only for thin clouds the predicted r(sub eff) become less reliable, which can be attributed primarily to an increased retrieval uncertainty for r(sub eff)

    Intensity of Coulomb Interaction between quasiparticles in diffusive metallic wires

    Get PDF
    The energy dependence and intensity of Coulomb interaction between quasiparticles in metallic wires is obtained from two different methods: determination of the temperature dependence of the phase coherence time from the magnetoresistance, and measurements of the energy distribution function in out-of-equilibrium situations. In both types of experiment, the energy dependence of the Coulomb interaction is found to be in excellent agreement with theoretical predictions. In contrast, the intensity of the interaction agrees closely with theory only with the first method, whereas an important discrepancy is found using the second one. Different explanations are proposed, and results of a test experiment are presented.Comment: Submitted to Solid States Communication

    Scaling analysis of Schottky barriers at metal-embedded semiconducting carbon nanotube interfaces

    Full text link
    We present an atomistic self-consistent tight-binding study of the electronic and transport properties of metal-semiconducting carbon nanotube interfaces as a function of the nanotube channel length when the end of the nanotube wire is buried inside the electrodes. We show that the lineup of the nanotube band structure relative to the metal Fermi-level depends strongly on the metal work function but weakly on the details of the interface. We analyze the length-dependent transport characteristics, which predicts a transition from tunneling to thermally-activated transport with increasing nanotube channel length.Comment: To appear in Phys.Rev.B Rapid Communications. Color figures available in PRB online versio

    Helix vs. Sheet Formation in a Small Peptide

    Full text link
    Segments with the amino acid sequence EKAYLRT appear in natural occurring proteins both in α\alpha-helices and β\beta-sheets. For this reason, we have use this peptide to study how secondary structure formation in proteins depends on the local environment. Our data rely on multicanonical Monte Carlo simulations where the interactions among all atoms are taken into account. Results in gas phase are compared with that in an implicit solvent. We find that both in gas phase and solvated EKAYLRT forms an α\alpha-helix when not interacting with other molecules. However, in the vicinity of a β\beta-strand, the peptide forms a β\beta-strand. Because of this change in secondary structure our peptide may provide a simple model for the αβ\alpha \to \beta transition that is supposedly related to the outbreak of Prion diseases and similar illnesses.Comment: to appear in Physical Review

    Probing interactions in mesoscopic gold wires

    Full text link
    We have measured in gold wires the energy exchange rate between quasiparticles, the phase coherence time of quasiparticles and the resistance vs. temperature, in order to probe the interaction processes which are relevant at low temperatures. We find that the energy exchange rate is higher than expected from the theory of electron-electron interactions, and that it has a different energy dependence. The dephasing time is constant at temperatures between 8 K and 0.5 K, and it increases below 0.5 K. The magnetoresistance is negative at large field scales, and the resistance decreases logarithmically with increasing temperatures, indicating the presence of magnetic impurities, probably Fe. Whereas resistivity and phase coherence measurements can be attributed to magnetic impurities, the question is raised whether these magnetic impurities could also mediate energy exchanges between quasiparticles.Comment: latex pothier.tex, 12 files, 15 pages in: Proceedings of the NATO Advanced Research Workshop on Size Dependent Magnetic Scattering, Pesc, Hungary, May 28 - June 1st, 2000 Chandrasekhar V., Van Haesendonck C. eds (Kluwer, 2001) [SPEC-S00/083

    Electron Dephasing in Mesoscopic Metal Wires

    Full text link
    The low-temperature behavior of the electron phase coherence time, τϕ\tau_{\phi}, in mesoscopic metal wires has been a subject of controversy recently. Whereas theory predicts that τϕ(T)\tau_{\phi}(T) in narrow wires should increase as T2/3T^{-2/3} as the temperature TT is lowered, many samples exhibit a saturation of τϕ\tau_{\phi} below about 1 K. We review here the experiments we have performed recently to address this issue. In particular we emphasize that in sufficiently pure Ag and Au samples we observe no saturation of τϕ\tau_{\phi} down to our base temperature of 40 mK. In addition, the measured magnitude of τϕ\tau_{\phi} is in excellent quantitative agreement with the prediction of the perturbative theory of Altshuler, Aronov and Khmelnitskii. We discuss possible explanations why saturation of τϕ\tau_{\phi} is observed in many other samples measured in our laboratory and elsewhere, and answer the criticisms raised recently by Mohanty and Webb regarding our work.Comment: 14 pages, 3 figures; to appear in proceedings of conference "Fundamental Problems of Mesoscopic Physics", Granada, Spain, 6-11 September, 200

    Ab-initio theory of NMR chemical shifts in solids and liquids

    Full text link
    We present a theory for the ab-initio computation of NMR chemical shifts (sigma) in condensed matter systems, using periodic boundary conditions. Our approach can be applied to periodic systems such as crystals, surfaces, or polymers and, with a super-cell technique, to non-periodic systems such as amorphous materials, liquids, or solids with defects. We have computed the hydrogen sigma for a set of free molecules, for an ionic crystal, LiH, and for a H-bonded crystal, HF, using density functional theory in the local density approximation. The results are in excellent agreement with experimental data.Comment: to appear in Physical Review Letter
    corecore