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Abstract14

Recently, Zhang et al. [2016] presented a mathematical framework based on a second–15

order Taylor series expansion in order to quantify the plane–parallel homogeneous bias16

(PPHB) in cloud optical thickness (τ) and effective droplet radius (reff) retrieved from17

the bispectral solar reflective method. This study provides observational validation of the18

aforementioned framework, using high–resolution reflectance observations from the Ad-19

vanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) over 48 ma-20

rine boundary layer cloud scenes. ASTER reflectances at a horizontal resolution of 30 m21

are aggregated up to a scale of 1920 m, providing retrievals of τ and reff at different spa-22

tial resolutions. A comparison between the PPHB derived from these retrievals and the23

predicted PPHB from the mathematical framework reveals a good agreement with corre-24

lation coefficients of r > 0.97 (for ∆τ) and r > 0.79 (for ∆reff). To test the feasibility of25

PPHB predictions for present and future satellite missions, a scale analysis with varying26

horizontal resolutions of the subpixel and pixel–level observations is performed, followed27

by tests of corrections with only limited observational high–resolution data. It is shown28

that for reasonably thick clouds with a mean subpixel τ larger than 5, correlations between29

observed and predicted PPHB remain high, even if the number of available subpixels de-30

creases or just a single band provides the information about subpixel reflectance variabil-31

ity. Only for thin clouds the predicted ∆reff become less reliable, which can be attributed32

primarily to an increased retrieval uncertainty for reff .33

1 Introduction34

One of the most widely used passive cloud property remote sensing techniques is35

the so–called bispectral solar reflectance method, where cloud top reflectances (R) at two36

different wavelengths are used to simultaneously infer the cloud optical thickness (τ) and37

effective droplet radius (reff) [Twomey and Seton, 1980; Nakajima and King, 1990; Naka-38

jima et al., 1991]. Reflectances at one wavelength are usually sampled in the visible to39

near–infrared spectral wavelength range (VNIR), where scattering is dominant and R in-40

creases with increasing τ. Conversely, reflectances at the second wavelength are sampled41

in a dominant bulkwater–absorption band in the shortwave–infrared spectral wavelength42

range (SWIR), where R typically decreases with increasing reff . The relationships between43

the cloud variables and the two reflectances RV and RS (in the VNIR and SWIR, respec-44

tively) are usually precomputed for a wide range of possible τ and reff combinations, as45

well as different solar and viewing geometries, in so called lookup tables (LUT). Sub-46

sequently, multi–dimensional interpolation within the respective LUT yields retrieved τ47

and reff for each RV and RS pair. Global estimates of τ and reff by means of the bispec-48

tral solar reflective method are provided by a multitude of past and present satellite mis-49

sions, such as Landsat [Nakajima et al., 1991], the Moderate Resolution Imaging Spectro-50

radiometer (MODIS, Platnick et al., 2003), the Visible Infrared Imaging Radiometer Suite51

(VIIRS, Lee et al., 2006; Walther et al., 2013), and the Spinning Enhanced Visible and In-52

frared Imager (SEVIRI, Roebeling et al., 2006).53

Retrievals using the bispectral solar reflective method rely on a number of critical54

assumptions. Of particular interest of this study is the assumption that clouds within a55

cloudy pixel are horizontally homogeneous and their reflectance is interpreted on the ba-56

sis of one–dimensional (1D) plane–parallel radiative transfer. Because in the 1D plane–57

parallel model there is no net horizontal photon transport between individual pixels within58

a scene, this approach is called the independent pixel approximation (IPA, see Cahalan59

et al., 1994a,b). By applying 1D radiative transfer to three–dimensional (3D) cloud struc-60

tures, the IPA introduces two general 3D radiative effects. For observations with a high61

spatial resolution the resolved horizontal scales are well below the free photon length path62

observed in the atmosphere. For such observations, ignoring horizontal photon transport63

between cloudy columns yields a breakdown of IPA, which was illustrated by scale–breaks64

in the power spectral densities of cloud–top reflectances [Marshak et al., 1995; Davis65
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et al., 1997; Oreopoulos et al., 2000], as well as by increased uncertainties in retrieved τ66

[Barker and Liu, 1995; Chambers et al., 1997]. In contrast, for observations with a low67

spatial resolution the assumption of horizontally homogeneous cloud structures within a68

pixel is likely no longer valid. As a result, IPA introduces large uncertainties in the pixel–69

level τ and reff retrievals if these cloud variables change on the unresolved subpixel scale.70

This is especially true for very inhomogeneous cloud fields, consisting of precipitating71

clouds or broken cumulus [Di Girolamo et al., 2010; Painemal and Zuidema, 2011; Liang72

et al., 2015]. Marine low–level clouds are especially susceptible to changes in aerosol73

loading and accurate retrievals of reff are essential in assessing aerosol–cloud interactions74

on regional and global scales [Werner et al., 2014; Wood et al., 2016].75

Studies by Cahalan et al. [1994a] and Marshak et al. [2006] on unresolved variabil-76

ity discussed biases in retrieved τ and reff , which are caused by the non–linear relation-77

ship between the cloud variables and the cloud–top reflectances RV and RS. These studies78

demonstrated an inequality between the reflectances and retrievals on the pixel–level scale79

and the mean values of the higher–resolution subpixel results. This inequality is called80

the plane–parallel homogeneous bias (PPHB). One of the considerations in past studies81

was that the PPHB for τ is only a function of RV, while the PPHB for reff is only deter-82

mined by the behavior of RS. Lately, Zhang and Platnick [2011] and Zhang et al. [2012]83

discussed the bias contributions from the co–dependence of the τ and reff retrievals due to84

the fact that the respective isolines in the LUT are not orthogonal. A unified framework85

was introduced in Zhang et al. [2016] (Z16), which acknowledges the fact that τ and reff86

are functions of both RV and RS. That study used a second–order Taylor series expansion87

of τ and reff with respect to both reflectances to illustrate that the PPHB can be predicted88

from the knowledge of subpixel reflectance variability.89

For present and future satellite missions the Z16 study is significant, as it provides a90

comprehensive mathematical explanation for the impact of unresolved cloud variability on91

cloud property retrievals at different horizontal scales. For example, observed biases due92

to plane–parallel assumptions in the operational MODIS retrievals (performed at 1000 m93

horizontal resolution) could be mitigated by correcting the retrieved pixel–level cloud94

properties. This correction would be based on predicted PPHB values, which are de-95

rived from sampled VNIR and SWIR reflectances at 500 m. This would yield pixel–level96

retrievals that are close to the subpixel averages of the respective cloud products, by si-97

multaneously avoiding the practical limitations high–resolution τ and reff retrievals would98

impose (e.g., increased computational costs and file sizes). However, numerical tests pre-99

sented in Z16 were mainly based on synthetic marine boundary layer (MBL) cloud fields100

generated by large eddy simulations. Correlations between actually observed and predicted101

PPHB for an example MODIS scene were slightly lower and especially for optically thin102

clouds the prediction seemed to be less reliable. Clearly, more extensive experimental vali-103

dation of the prediction framework is necessary.104

This is a follow up study to Z16, which aims to further evaluate the mathematical105

framework with high–resolution ASTER observations of 48 inhomogeneous MBL scenes.106

A newly developed, ASTER–specific retrieval algorithm provides retrievals of τ and reff107

at a horizontal resolution of 30 m [Werner et al., 2016]. This data set allows for an exten-108

sive test of the PPHB prediction scheme introduced in Z16, as well as a sensitivity study109

with different horizontal resolutions. The manuscript is structured as follows: an overview110

of ASTER observations and the retrieval algorithm is given in section 2. A description111

of the PPHB, as well as the mathematical framework to predict the biases in τ and reff ,112

is presented in section 3. The prediction framework is applied to high–resolution ASTER113

data in order to mitigate the observed PPHB, first in a case study in section 4.1, and sub-114

sequently for all 48 MBL scenes in section 4.2. To test the practical implementation of the115

mathematical framework for present and future satellite missions, a scale–analysis for dif-116

ferent horizontal resolutions of the subpixel and pixel–level data, followed by a feasibility117
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study of a correction based on just a single band, is presented in section 5. A summary is118

given in section 6.119

2 ASTER Observations120

Data in this study are provided by high–resolution ASTER observations over the121

48 MBL scenes detailed in Werner et al. [2016]. These observations are comprised of se-122

lected altocumulus and broken cumulus scenes which were sampled off the coast of Cal-123

ifornia. They are characterized by a wide range of possible τ and reff solutions, different124

scene cloud covers, and varying solar zenith angles.125

Detailed information on ASTER are provided by Yamaguchi and Hiroji [1993]; Ya-126

maguchi et al. [1998] and Abrams [2000]. ASTER samples in the VNIR are characterized127

by a spatial resolution of 15 m, increasing to 30 m and 90 m in the in the SWIR and ther-128

mal infrared (TIR) spectral wavelength range, respectively. Applying the equations and co-129

efficients reported in Abrams et al. [2004] on the raw digital ASTER counts yields ASTER130

cloud top reflectances with absolute radiometric uncertainties of < 4 % [Yamaguchi et al.,131

1998].132

Retrievals of τ and reff are facilitated by the ASTER–specific, research–level re-133

trieval algorithm presented in Werner et al. [2016], which utilizes the same algorithms134

as the operational MODIS C6 retrievals [King et al., 1997; Platnick et al., 2003]. The use135

of this well tested and documented algorithm setup provides reliable results for cloud top,136

optical and microphysical variables based on ASTER observations, which compare well137

with the operational MODIS C6 products [Werner et al., 2016]. The mean retrieval un-138

certainties are 15% for τ and 23% for reff . Although the ASTER reflectance samples in139

the VNIR have a higher horizontal resolution, the bispectral retrieval approach utilizes R140

observations in both the VNIR and SWIR, respectively. Thus, the highest spatial resolu-141

tion of R, τ and reff provided by ASTER measurements is 30 m. Aggregation of measured142

R at 30 m within larger pixels, in combination with MODIS–like retrievals based on the143

ASTER–specific retrieval algorithm, provides retrievals of τ and reff for a wide range of144

horizontal resolutions. In this study pixel sizes are varied between 30 − 1920 m, spanning145

the range of native ASTER resolution to scales larger than the operational MODIS cloud146

property retrievals.147

From here on RV indicates the ASTER band 3N (nadir–viewing mode) reflectance148

centered around a wavelength of λ = 0.86 µm (in the VNIR), while RS identifies the149

ASTER band 5 reflectance centered around λ = 2.1 µm (in the SWIR).150

3 PPHB and Prediction Framework151

This section gives a short introduction to the PPHB for τ and reff retrievals by means152

of a case study. Subsequently, a brief summary of the mathematical framework for the153

PPHB decomposition and prediction, first reported in Z16, is given. Finally, issues in the154

definition of the PPHB and the prediction framework for partially cloudy pixels are dis-155

cussed.156

3.1 PPHB157

Figure 1 shows an example LUT comprised of precomputed RV and RS. The so-158

lar zenith angle is θ0 = 48.7◦, while the relative azimuth angle (related to the difference159

between sensor and solar azimuth angle), and sensor zenith angle are close to 0◦. This160

geometry represents ASTER observations on 03/02/2006 at 19:14:44 UTC (case C1 in161

Werner et al., 2016).162
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Figure 1. Example lookup table from ASTER band 3N reflectances (RV) in the VNIR and band 5 re-

flectances (RS) in the SWIR. Black and red circles indicate ASTER measurements for two pixels: one with

low and the other with high subpixel reflectance variability, respectively. The black (white) plus sign indicates

the mean value of subpixel reflectances for the more inhomogeneous (homogeneous) example pixel.
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From the shape of the LUT it can be seen that τ and reff vary mostly with RV and163

RS, respectively. However, the curvatures in the τ and reff isolines reveal the non–linear164

relationship between cloud variables and cloud top reflectances, which define the contribu-165

tions to the total PPHB that were discussed in Cahalan et al. [1994a] and Marshak et al.166

[2006]. It is also obvious that τ isolines are not orthogonal to the reff isolines, which indi-167

cates that reflectances in the VNIR and SWIR covary with τ and reff . In turn, this means168

that retrievals of both parameters are not independent from one another. This effect con-169

tributes to the total PPHB [Zhang and Platnick, 2011; Zhang et al., 2012].170

The black dots in Figure 1 illustrate 1024 samples of RV and RS at 30 m horizontal175

resolution within a larger pixel with a horizontal resolution of 960 m (i.e., a MODIS–like176

horizontal resolution). This example indicates a pixel containing a rather homogeneous177

cloud, where there is little variability in RV and RS and all data points are grouped closely178

together. The subpixel cloud variability can be quantified by calculating the inhomogeneity179

index Hσ,V:180

Hσ,V =
σV

RV

, (1)

which is defined as the ratio of spatial standard deviation (σV) to mean value (RV, indi-181

cated by the horizontal bar) of the subpixel VNIR reflectance [Liang et al., 2009; Di Giro-182

lamo et al., 2010; Zhang and Platnick, 2011; Zhang et al., 2012; Cho et al., 2015]. For this183

pixel Hσ,V is 0.02, while for the SWIR band reflectance the respective inhomogeneity in-184

dex is Hσ,S = 0.03. The white plus sign, indicating the position of mean reflectances RV185

and RS, is centered right in the middle of the 30 m subpixel values.186

Following the definitions of Cahalan and Joseph [1989], Marshak et al. [2006] and187

Z16, the PPHB for cloud optical thickness (∆τ) and effective droplet radius (∆reff) can188

be expressed as the difference between the cloud property retrievals based on the mean189
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subpixel reflectances and the mean values of the actual subpixel retrievals:190

∆τ = τ

(
RV, RS

)
− τ (RV, RS)

∆reff = reff

(
RV, RS

)
− reff (RV, RS) . (2)

Using equation (2) to assess the PPHB of the homogeneous pixel shown in Figure 1 yields191

low PPHB values of ∆τ = −0.07 and ∆reff = −0.01 µm. Conversely, the red dots illustrate192

a 960 m pixel containing a rather inhomogeneous cloud, where a large variability in sub-193

pixel RV and RS at 30 m exists. For this example pixel Hσ,V = 0.41 and Hσ,S = 0.25. As194

a result, the observed PPHB values of ∆τ = −3.59 and ∆reff = 1.40 µm are much larger.195

At this point it should be noted that the variability in the reflectances RV and RS, as196

well as the variability in the respective subpixel τ and reff retrievals, may be caused by 3D197

radiative effects instead of actual changes in the underlying cloud structure [Marshak et al.,198

2006; Davis and Marshak, 2010]. These effects, caused by the independent treatment of199

cloudy columns in the IPA approach, cannot be explained by 1D plane–parallel radiative200

transfer. The PPHB just describes the statistical difference between subpixel and pixel–201

level retrievals due to an observed reflectance variability in combination with the non–202

linearity of the LUT. However, the high–resolution subpixel results might be additionally203

biased due to 3D radiative effects (e.g., cloud shadows, illuminated cloud sides).204

3.2 Mathematical Framework for PPHB Prediction205

The two examples in Figure 1 illustrate that the combined subpixel variability in RV206

and RS determines the PPHB biases ∆τ and ∆reff . The discussion in Z16 shows that the207

sign and magnitude of ∆τ and ∆reff can be investigated by expanding the respective cloud208

optical and microphysical properties into two–dimensional Taylor series of RV and RS,209

which in matrix form is:210 (
∆τ

∆reff

)
=

©«
τ

(
RV, RS

)
− τ (RV, RS)

reff

(
RV, RS

)
− reff (RV, RS)

ª®
¬

=
©«
− 1

2
∂2τ(RV,RS)

∂2RV
−

∂2τ(RV,RS)
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− 1
2
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− 1
2
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−
∂2

reff(RV,RS)
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− 1
2

∂2
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¬
·
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σ2
V

cov (RV, RS)

σ2
S

ª®
¬

=
©«
− 1

2
∂2τ(RV,RS)

∂2RV
RV

2
−
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∂RV∂RS

RV RS − 1
2

∂2τ(RV,RS)
∂2RS

RS
2

− 1
2

∂2
reff(RV,RS)
∂2RV

RV
2

−
∂2

reff(RV,RS)
∂RV∂RS

RV RS − 1
2

∂2
reff(RV,RS)
∂2RS

RS
2
ª®
¬
·
©«
H

2
σV

Hcov

H
2
σS

ª®
¬
. (3)

Here, σ2
V and σ2

S are the spatial variances, while cov (RV, RS) is the spatial covariance of211

the reflectances RV and RS. equation (3) consists of two parts: a vector
[
σ2

V, cov (RV, RS) , σ
2
S

]T
,212

which describes the sampled subpixel variability of RV and RS, and a matrix containing213

the second–order derivatives of the LUT. The former can be easily calculated from high–214

resolution measurements, while the latter can be derived from numerical differentiation215

within the applied LUT. Note, that by multiplying each matrix element with the respec-216

tive mean reflectances the terms σ2
V, cov (RV, RS), and σ2

S can be easily substituted with217

the commonly used inhomogeneity indices H
2
σV
= σ2

V/RV
2

and H
2
σS
= σ2

S/RS
2

following218

equation (1), as well as the relative covariance term Hcov = cov (RV, RS) /RV RS.219

Figures 2(a)–(f) shows an example of each of the six matrix elements. The LUT is224

derived for the respective solar and viewing geometry for ASTER observations on 03/08/2005225

at 19:08:35 (case C7 in Werner et al., 2016). The two PPHB contributions discussed in226

Marshak et al. [2006], illustrated in Figure 2(a) for ∆τ and 2(f) for ∆reff , are almost uni-227

versally negative, indicating that the retrievals based on aggregated reflectances are smaller228

than the actual subpixel mean values. However, the contributions from the respective sec-229

ondary bands (RS in the τ retrieval and RV in the reff retrieval) show a more complex be-230

havior and can be strongly positive, as shown in Figures 2(c)–(d). Similar observations231
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Figure 2. Example lookup table (LUT) from ASTER band 3N reflectances RV in the VNIR and band 5

reflectances RS in the SWIR. Colors illustrate the values of the six individual terms of the matrix of second

derivatives in equation (3), namely (a) − 1
2
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2
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2
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222

223

hold true for contributions from the covariance term, shown in Figure 2(b) and 2(e). This232

means that the sampled subpixel reflectance variability is not the only important variable233

determining the PPHB. The retrieval sensitivity and the respective position of the mea-234

surements in the LUT are equally important. Generally, the sign of ∆τ is dominated by235

the first matrix element and mostly negative (except for very large τ). In contrast, the sign236

and magnitude of ∆reff is influenced by all three matrix elements and varies strongly, es-237

pecially for small τ. Note, that the apparent striping pattern in some of the matrix ele-238

ments (e.g., in Figure 2(c)) is caused by artifacts in the applied numerical derivation al-239

gorithm. For this work, the numerical derivatives are calculated with a central differences240

scheme and a reflectance interval of 0.02. An increase in LUT resolution, a decrease of241

the reflectance interval and the application of different numerical derivation schemes with242

lower truncation errors can mitigate these artefacts, while increasing the computational243

costs of the derivation algorithm.244

3.3 PPHB for Partially Cloudy Pixels245

Two significant factors make it difficult to calculate and predict the PPHB for par-246

tially cloudy (PCL) pixels. The first issue arises from the definition of ∆τ and ∆reff in247

equation (2), where the sign and magnitude of e.g., ∆τ are determined by a pixel–level248

(τ
(
RV, RS

)
) and a subpixel term (τ (RV, RS)). For PCL pixels the two terms are comprised249

of different subpixel populations. Whereas the pixel–level term is retrieved from the mean250

of all subpixel reflectances, the subpixel term is only defined for the cloudy part of the251

pixel (i.e., a clear subpixel has no defined τ and reff and thus is not represented in the252

mean value). While it is conceivable that a value of τ = 0 could be assigned to a clear253
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subpixel, similar considerations for the effective droplet radius are not valid (i.e., a value254

of reff = 0 µm is unphysical).255

Moreover, the general characteristics of the Taylor series expansion might prevent256

a reliable estimate of the PPHB following equation (3) if a pixel is partially cloudy. The257

Taylor series is a series expansion of a real function about a point. Most well–behaved258

functions can be reliable approximated by a finite number of terms and the remaining er-259

ror is comparatively small. However, very complex functions might require a series expan-260

sion up to a large order (O) to reliably approximate the original function. Even then, the261

remaining error might be significant. For PCL pixels, the cloudy subpixels exhibit a re-262

flectance distribution similar to the ones shown in Figure 1, where RV and RS are largely263

determined by the underlying cloud characteristics. The reflectances from the clear sub-264

pixels, meanwhile, are likely outside the LUT and clustered in the lower–left corner (i.e.,265

very low RV and RS). Representing such a distribution with a second–order Taylor series266

(O = 2) likely yields unreliable results with a large remaining error.267

In order to successfully apply the mathematical framework presented in section 3.2268

to PCL pixels, retrievals based on only cloudy RV and RS are required. Studies by Han269

et al. [1994] and Coakley Jr. et al. [2005] discuss the impact of surface contamination on270

the retrieval products of PCL pixels and propose methods to estimate the cloudy part re-271

flectances and cloud variables. High–resolution ASTER data provide the opportunity to272

evaluate and expand on these approaches in future studies and will allow to further test273

the PPHB correction for PCL pixels.274

4 Correction of Observed PPHB275

In this section ASTER reflectance observations at 30 m horizontal resolution are276

used to predict the PPHB based on equation (3). The predicted PPHB results are com-277

pared to the actually observed biases, first for a case study (section 4.1) and subsequently278

in a statistical analysis for 48 MBL scenes (section 4.2).279

4.1 Case Study280

Figure 3(a) shows a grayscale image of RV at 30 m horizontal resolution. Data were285

sampled on 03/08/2005 at 19:08:35 UTC. This example depicts a rather complex and in-286

homogeneous MBL cloud scene with a number of cloud holes (around 124.60◦ W, 39.25◦ N287

and 124.25◦ W, 39.25◦ N), larger areas of thin clouds and three areas of increased cloud288

reflectance (located in the southwest, middle and northeast of the granule). Retrieved τ289

and reff are shown in Figures 3(b)–(c). Most of the scene exhibits retrievals ranging from290

τ = 5 − 10 and reff = 12 − 16 µm, whereas the thick cloudy regions are characterized by291

τ > 11 and reff = 8 − 10 µm. Some extreme values of τ > 17 and reff < 8 µm (around the292

thick clouds) and τ < 2 and reff > 17 µm (around the cloud edges) can be observed. De-293

creasing the spatial resolution to 960 m (i.e., a MODIS–like horizontal resolution) yields294

a much smoother cloud field, as illustrated in Figures 3(d)–(f). Here, the lowest and high-295

est retrieval observations are much less frequent, which is especially obvious for the large296

optical thickness values shown in Figure 3(b).297

Maps of observed ∆τ and ∆reff , based on equation (2) and shown in blue and red306

colors (depending on sign and magnitude), are provided in Figure 4(a) and 4(d), respec-307

tively. Here, the mean values τ (RV, RS) and reff (RV, RS) are calculated from the high–308

resolution retrievals based on 30 m ASTER observations, while τ
(
RV, RS

)
and reff

(
RV, RS

)
309

are the retrievals based on aggregated reflectances at 960 m. Following the discussion in310

section 3.3, the PPHB is only calculated for pixels with a subpixel cloud cover of Csub =311

1.0. Pixels with Csub < 1.0 are shown in grey colors and are not included in the analy-312

sis. For this MBL scene ∆τ and ∆reff are almost exclusively negative and positive, respec-313

tively, with −0.55 < ∆τ < −0.01 and −0.03 µm < ∆reff < 0.92 µm. The largest ∆τ314
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Figure 3. (a) Single–band grayscale image of band 3N reflectances sampled by ASTER off the coast of

California on 03/08/2005 at 19:08:35. The horizontal resolution is 30 m. (b) Same as (a) but for the retrieved

cloud optical thickness τ. (c) Same as (a) but for the effective droplet radius reff . (d)–(f) Same as (a)–(c) but

for a horizontal resolution of 960 m.

281

282

283

284

(in magnitude) are obtained for pixels containing thick clouds (see Figure 3 for compar-315

ison), while the thin cloud regions exhibit the largest ∆reff . The predicted PPHB results,316

derived from equation (3) and the matrix elements illustrated in Figure 2, are shown in317

Figure 4(b) for ∆τ and Figure 4(e) for ∆reff . It is obvious that both the sign and magni-318

tude of the predicted PPHB results agree well with the actually observed values shown in319

Figure 4(a) and (d). A pixel–level comparison between the predicted and observed PPHB320

is shown in Figure 4(c) and 4(f) for ∆τ and ∆reff , respectively. Colors indicate the value321

of the subpixel inhomogeneity index Hσ,V. The objectively good agreement between pre-322

dicted and observed PPHB seen in the maps in Figure 4 is confirmed, with data points323

close to the 1:1 line and high values of Pearson’s product–moment correlation coefficient324

of r ≥ 0.88. For ∆τ there seems to be no dependence on Hσ,V; however, there is an in-325

crease of ∆reff with an increase in Hσ,V. Overall, the prediction works better for ∆τ than326

for ∆reff , which can be attributed to the more complex distribution of the matrix elements327

shown in Figure 2(d)–(f). All three matrix elements have a strong contribution to the total328

∆reff , while small changes in RV or RS can switch the sign of ∆reff from positive to neg-329

ative, especially for small optical thicknesses (e.g., illustrated by the thin negative stripe330

in Figure 2(d)). Such significant changes in sign and magnitude do not exist in the three331

matrix elements for ∆τ, which makes the predicted ∆reff more sensitive to uncertainties in332

the sampled RV and RS. For small reflectances (i.e., thin clouds) there is also an overall333

decrease in retrieval sensitivity for reff due to the convergence of the respective LUT iso-334
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Figure 4. (a) Observed plane–parallel homogeneous bias (PPHB), derived from subpixel data with a hor-

izontal resolution of 30 m and pixel–level data with a horizontal resolution of 960 m, for the cloud optical

thickness τ for the ASTER cloud scene sampled off the coast of California on 03/08/2005 at 19:08:35. Col-

ors indicated the magnitude and sign of the PPHB, grey colors indicate pixels with a subpixel cloud cover

Csub < 1. (b) Same as (a) but for the predicted PPHB based on equation (3). (c) Scatter plot of observed

versus predicted PPHB for τ for all pixels with Csub = 1. Colors indicate the respective pixel value of the

inhomogeneity index of ASTER 3B reflectances Hσ,V. (d)–(f) Same as (a)–(c) but for the effective droplet

radius reff .
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299

300

301

302

303

304

305

lines [Werner et al., 2013; Cho et al., 2015; Werner et al., 2016]. As a result, the increased335

retrieval uncertainty for reff

(
RV, RS

)
and reff (RV, RS) impacts not only the calculation of336

the numerical derivatives, but also the actually observed ∆reff .337

4.2 Statistics338

The results in Figure 4 reveal a good agreement between observed PPHB and the339

predicted values based on the framework presented in section 3. To confirm these findings340

and test the viability of the framework for a wide array of inhomogeneous cloud cases,341

similar analysis is performed for the 48 MBL scenes introduced in [Werner et al., 2016].342

As for the case study, only pixels with Csub = 1.0 are included, which yields a data set343

of n = 59876 pixels. The pixel–level comparison between observed and predicted ∆τ and344
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Figure 5. (a) Scatter plot of observed versus predicted plane–parallel homogeneous bias (PPHB) for the

cloud optical thickness τ, derived from subpixel data with a horizontal resolution of 30 m and pixel–level data

with a horizontal resolution of 960 m. Data is from 48 marine boundary layer scenes sampled off the coast

of California, amounting to n = 59876 pixels with a subpixel cloud cover Csub = 1. Colors indicate the

respective pixel value of τ (RV, RS). (b) Same as (a) but for the effective droplet radius reff . (c) Joint PDF of

the ratio of predicted to observed PPHB for τ and the ratio of predicted to observed PPHB for reff .

347

348

349

350

351

352

∆reff is shown in Figure 5(a)–(b), where colors indicate the mean subpixel cloud optical345

thickness τ (RV, RS).346

The observed PPHB for all scenes, as derived from ASTER retrievals using equation353

(2), is in the range of −6.05 < ∆τ < 0.05 and −0.78 µm < ∆reff < 2.86 µm, respectively.354

Similar to the case study in Figure 4, there is a good agreement between observed and355

predicted PPHB with high correlation coefficients of r = 0.98 (∆τ) and r = 0.79 (∆reff).356

The prediction based on equation (3) seems to be particularly good for thicker clouds with357

τ (RV, RS) > 5. Similar to the case study, the correlation between observed and predicted358

PPHB gets lower for clouds with a low optical thickness τ (RV, RS) < 5, which is espe-359

cially obvious for ∆reff . Excluding these thin clouds from the analysis increases the cor-360

relation coefficient between observed and predicted ∆reff from r = 0.79 to r = 0.87. A361

clear relationship between cloud optical thickness and PPHB exists, as the highest ∆reff362

exist for pixels with low τ (RV, RS). For ∆τ the behavior is not as pronounced, but gener-363

ally there is an increase in the absolute values of the PPHB with an increase in τ (RV, RS).364

Figure 5(c) shows the joint probability density function (PDF) of the ratios of predicted365

to observed ∆τ and ∆reff . Most observations show ratios of unity, confirming the good366

agreement between predicted and observed PPHB. About 70% of all data points are char-367

acterized by a ratio of observed to predicted ∆τ in the range of 0.8 − 1.2. The spread for368

the ratio of observed to predicted ∆reff is larger, with 80% of all data points covering the369

range 0.5 − 1.5.370

The results presented in Figure 4 and Figure 5 show that knowledge about the sub-377

pixel reflectance variability, in combination with equation (3), can be applied to success-378

fully predict ∆τ and ∆reff for the 48 MBL scenes in this study. This also means, that the379

difference between the actually obtained mean values of the subpixel retrievals τ (RV, RS)380

and reff (RV, RS) at a horizontal resolution of 30 m and the pixel–level retrievals based on381

aggregated reflectances at 960 m, can be mitigated by correcting τ
(
RV, RS

)
and reff

(
RV, RS

)
382

with the predicted ∆τ and ∆reff . Figure 6(a) shows the joint PDF of the ratio of observed383

τ

(
RV, RS

)
to τ (RV, RS) (i.e, the ratio of retrievals based on aggregated reflectances to the384
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Figure 6. (a) Joint PDF of the ratio of observed τ
(
RV, RS

)
to τ (RV, RS) and τ (RV, RS). Values have been

derived from subpixel data with a horizontal resolution of 30 m and pixel–level data with a horizontal reso-

lution of 960 m. (b) Same as (a) but for the observed τ
(
RV, RS

)
, which has been corrected by the predicted

∆τ, based on equation (3). (c) PDFs of the ratio of observed τ
(
RV, RS

)
to τ (RV, RS) (black) and the ratio

of observed τ
(
RV, RS

)
, which has been corrected by the predicted ∆τ, to τ (RV, RS) (blue). (d)–(f) Same as

(a)–(c) but for the effective droplet radius reff .

371

372

373

374

375

376

mean subpixel retrievals) and τ (RV, RS). A ratio of 1 indicates that there is no PPHB,385

while ratios smaller (larger) than 1 indicate a negative (positive) PPHB. The primarily386

negative ∆τ, illustrated in Figure 5(a), leads to an obvious negative bias in the τ retrievals387

based on aggregated reflectances, with underestimations of up to 7% for thin clouds. With388

increasing τ (RV, RS) these underestimations converge to a value of about 2%. Figure 6(b)389

shows the results of a correction of the retrieved τ
(
RV, RS

)
with the predicted PPHB val-390

ues based on equation (3). The overall negative bias illustrated in Figure 6(a) is gone after391

the correction and most observations (red colors) show a ratio of 1, indicating that the392

mean of the subpixel retrievals and τ
(
RV, RS

)
are in close agreement. The maximum ∆τ393

for thin clouds is reduced to about ±3%. PDFs of the ratio of τ
(
RV, RS

)
to τ (RV, RS) are394

shown in Figure 5(c) for both the uncorrected (black) and corrected (blue) data set. It is395

clear that by correcting τ retrievals based on aggregated reflectances with the predicted396

∆τ the mean of the subpixel retrievals can be successfully reproduced. A ratio close to397
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1 (i.e., no PPHB) is obtained for over 50% of all pixels, while the overall negative bias398

for τ
(
RV, RS

)
is removed. Without a PPHB correction the normalized root–mean–square399

deviation between pixel–level and subpixel retrievals (nRMSD, defined as the RMSD nor-400

malized by the mean of the subpixel results) is 1.4%, while the 1st and 99th percentiles of401

the ratio of τ
(
RV, RS

)
to τ (RV, RS) are 0.960 and 1.003, respectively. After a correction402

of the pixel–level retrievals with the predicted ∆τ the nRMSD=0.25% and the 1st and 99th
403

percentiles are 0.991 and 1.010.404

Similar analysis for ∆reff is presented in Figures 6(d)–(f). A positive PPHB of up405

to 12% exists and overall strong overestimations in the range of 5% exist over the whole406

observable reff (RV, RS) range. The correction of the PPHB with predicted ∆reff again407

yields considerable improvements, as most observations (red colors) exhibit a ratio of408

reff

(
RV, RS

)
to reff (RV, RS) close to 1. Most pixels are characterized by a good agreement409

between subpixel means and pixel–level retrievals in the range of ±2%. An area of strong410

overestimations of up to 12% remains (around reff (RV, RS) = 8 − 10 µm), which is as-411

sociated with low τ (RV, RS) < 5. Excluding these data points from the analysis yields a412

joint PDF were considerably less of these observations remain after the correction. Figure413

6(d) shows PDFs of the ratio of pixel–level retrievals (based on aggregated reflectances)414

to reff (RV, RS), again for the data set with and without the applied corrections with pre-415

dicted ∆reff . Similar to the cloud optical thickness results, over 40% of pixels show a ratio416

of 1 and the 1st and 99th percentiles change from 0.998 and 1.047 to 0.992 and 1.025,417

respectively. Again, the nRMSD is significantly reduced from 1.4% to 0.87%. This in-418

dicates that the correction based on equation (3) yields an improved agreement between419

reff

(
RV, RS

)
and reff (RV, RS).420

The liquid water path LWP, while not an input parameter for the radiative transfer421

simulations to generate the LUT for the retrievals, is the primary parameter that deter-422

mines cloud shortwave radiative forcing and is an essential variable in the evaluation of423

climate models [Jiang et al., 2012]. It can be derived as the product of retrieved τ and reff424

[Miller et al., 2016]:425

LWP = Γ · ρl · τ · reff, (4)

where ρl is the density of liquid water and Γ is a coefficient linked to assumptions about426

the vertical cloud profile (here Γ = 2/3, assuming vertically homogeneous clouds). Similar427

to ∆τ and ∆reff , ∆LWP was derived for all pixels and compared to the predicted values428

from the mathematical framework presented in section 3.2. Since the pixel–level retrievals429

τ

(
RV, RS

)
and reff

(
RV, RS

)
are usually biased low and high, respectively, and both biases430

are comparable in magnitude, ∆LWP is rather small. The 1st and 99th percentiles of the431

ratio of uncorrected pixel–level to mean subpixel LWP for all analyzed pixels are 0.974432

and 1.037, while about 18% of data exhibit a ratio of 1 (i.e., the distribution is centered433

around 1). The correction of the pixel–level results with predicted ∆LWP slightly reduces434

these maximum deviations to 0.979 and 1.036, respectively, and about 29% of pixels show435

a ratio of 1. Moreover, the nRMSD changes from 1.79% to 0.93%. Thus, the correction436

of pixel–level LWP with ∆LWP yields results that are closer to the mean subpixel ob-437

servations. The correlation between observed and predicted ∆LWP is r = 0.86, which is438

comparable to the correlation for ∆reff .439

The statistical analysis from over n = 59876 pixels, sampled over 48 MBL cloud440

scenes, illustrates that the mathematical framework presented in section 3 can be success-441

fully applied to predict and subsequently mitigate the PPHB. As mentioned in section 3.1,442

the correction of τ
(
RV, RS

)
and reff

(
RV, RS

)
(i.e., the lower–resolution, pixel–level re-443

trievals) with the predicted ∆τ and ∆reff values yields retrievals that are in close agree-444

ment with the mean subpixel results. However, τ (RV, RS) and reff (RV, RS) might be biased445

due to 3D radiative effects and therefore may not represent the true, high–resolution cloud446

properties.447
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5 Practical Implementation448

The analysis in section 4 demonstrates that samples of high–resolution VNIR and449

SWIR reflectances on the subpixel scale can be applied to explain and correct the ob-450

served PPHB of the pixel–level retrievals τ
(
RV, RS

)
and reff

(
RV, RS

)
. However, most451

satellite missions only provide limited subpixel reflectance information, affecting the deter-452

mination of the vector of subpixel reflectance variability in equation (3). While retrievals453

of τ and reff by MODIS are based on aggregated reflectances at a similar horizontal reso-454

lution of 1000 m, subpixel reflectance data in the VNIR and SWIR are sampled at 250 m455

and 500 m horizontal resolution, respectively. Similarly, VIIRS provides 4 × 4 subpixel456

VNIR and SWIR reflectances at 375 m horizontal resolution, while the cloud property457

retrievals are performed for larger pixels with a horizontal resolution of 750 m. Finally,458

the SEVIRI imager includes just a single high–resolution visible band (centered around459

λ = 0.75 µm) with a horizontal resolution of 1000 m that yields subpixel reflectances460

within each (3000 × 3000)m pixel. It is therefore essential to study the implications of461

different horizontal resolutions, as well as limitations in the availability of high–resolution462

bands, on the viability of the PPHB prediction. The analysis in section 5.1 provides in-463

formation about the behavior of the elements of the subpixel variability vector in equa-464

tion (3) with changes in pixel–level and subpixel horizontal resolution, while section 5.2465

presents statistics of ∆τ and ∆reff for different combinations of subpixel and pixel–level466

scales. Section 5.3 discusses the result of a PPHB correction with only high–resolution467

VNIR band reflectances.468

5.1 Scale Dependence of Subpixel Variability469

The results presented in section 4.1 and 4.2 are based on subpixel ASTER observa-470

tions with a horizontal resolution of 30 m and pixel–level data with a horizontal resolution471

of 960 m. If η is the number of available subpixels, there are η = 32 · 32 = 1024 pixels472

with a horizontal resolution of 30 m within each (960 × 960) m pixel. For a fixed pixel–473

level horizontal resolution the matrix of second–order derivatives in equation (3) is not474

dependent on η, while the subpixel variability vector
[
σ2

V, cov (RV, RS) , σ
2
S

]T
might change475

significantly with a change in η. Conversely, for a fixed subpixel horizontal resolution the476

matrix of second–order derivatives (due to a change in RV and RS), as well as the sub-477

pixel variability vector are affected by a change in pixel–level scale.478

Figure 7(a) shows the behavior of σV at 30 m (i.e., the first element of the subpixel490

variability vector) for pixel–level resolutions between 60 m (η = 2 · 2 = 4) and 1920 m491

(η = 64 · 64 = 4096), respectively. Dots show the median of all overcast pixels for each492

pixel–level scale, while vertical bars indicate the interquartile range (IQR, 75th-25th per-493

centile of all pixels). Because the increase of σV with increasing pixel–level scale seems494

to follow a power law (as reported by Cahalan et al. 1994a for fractal clouds), the rela-495

tionship between the two variables is illustrated in a log–log diagram, where the logarith-496

mic behavior becomes almost linear. Similar relationships between cov (RV, RS) and σS497

(i.e., the second and third elements of the subpixel variability vector) and pixel–level scale498

are evident in Figures 7(b)–(c). However, the power law behavior seems to break down499

for η = 4 (i.e., 30 m observations within a 60 m pixel) and the median values are further500

from the linear fit (σS even increases when transitioning from a pixel–level scale of 120 m501

to 60 m). This is most likely a statistical issue, where the four available subpixels are not502

sufficient to describe the actual subpixel reflectance distribution.503

Linear regressions through the data in log–log space yield the relative susceptibili-504

ties SσV , Scov and SσS , which describe a relative change in the variability parameters σV,505

cov (RV, RS) and σS with a relative change in pixel–level horizontal resolution, respectively506
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Figure 7. (a) Median (dots) and interquartile range (IQR) of the standard deviation of 30 m VNIR re-

flectances (σV) as a function of pixel–level horizontal resolution. Data is from 48 marine boundary layer

scenes sampled off the coast of California. The grey diagonal line represents a linear regression through the

data in log–log space (the first data point at 60 m horizontal resolution is omitted in the calculation of the

regression). The correlation coefficient (r) between data and regression, as well as the slope (i.e., relative

susceptibility SσV ), are given. (b) Same as (a) but for the covariance of 30 m VNIR and SWIR reflectances

(cov (RV, RS)). (c) Same as (a) but for the standard deviation of 30 m SWIR reflectances (σS). (d) Derived

σV from subpixel VNIR reflectances at different horizontal resolutions. The pixel–level scale is 1920 m. The

grey diagonal line represents a linear regression through the data in log–log space (the last data point at 960 m

horizontal resolution is omitted in the calculation of the regression). (e) Same as (d) but for cov (RV, RS). (f)

Same as (d) but for σS.
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[Feingold et al., 2001; Werner et al., 2014]:507

SσV =

scale

σV
·

dσV

d scale
=

d lnσV

d ln scale

Scov =

scale

cov (RV, RS)
·

d cov (RV, RS)

d scale
=

d ln cov (RV, RS)

d ln scale

SσV =

scale

σS
·

dσS

d scale
=

d lnσS

d ln scale
. (5)

The linear regressions, which determine these susceptibility parameters, are indicated by508

grey diagonal lines in Figure 7. Due to the breakdown of the power law behavior for η =509

4, the regression parameters were derived without this specific data point. There is a high510

correlation between observed data and the respective linear regressions, with correlation511

coefficients of r > 0.92. The relative susceptibilities are SσV = 0.383, Scov = 0.691 and512

SσS = 0.184, which means there is almost a factor of 2 between Scov and SσV , as well as513

SσV and SσS . However, even though cov (RV, RS) is most susceptible to a change in pixel–514
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level horizontal resolution, it is several orders of magnitude smaller than the respective σV515

and σS values.516

While an increase in pixel–level scale yields an increase in subpixel variability, the517

opposite relation is observed for changes in subpixel scale. Figures 7(d)–(f) show a loga-518

rithmic decrease in σV, cov (RV, RS) and σS, which were derived from sampled subpixel519

reflectances at increasing horizontal resolutions between 30-960m. Here, the pixel–level520

scale is fixed at 1920m. Similar to the pixel–level relationships, there is a breakdown521

of the power law behavior for η = 4 (i.e., 960 m observations within a 1920 m pixel).522

These observations are characterized by an increase in IQR and significant deviations from523

the linear regressions. Omitting this last data point from the regression analysis yields524

r > 0.92 and relative susceptibilities of SσV = 0.137, Scov = 0.311 and SσS = 0.107.525

Again, Scov > SσV > SσS , although the susceptibilities towards changes in subpixel scale526

are smaller than towards changes in pixel–level horizontal resolution.527

5.2 PPHB Correction for Different Scales528

The analysis in section 5.1 illustrates that elements of the subpixel variability vec-529

tor
[
σ2

V, cov (RV, RS) , σ
2
S

]T
in equation (3) vary significantly, depending on the respective530

horizontal resolution of the subpixel and pixel–level observations. However, increased sub-531

pixel variabilities do not automatically imply an increase in magnitude of ∆τ and ∆reff .532

For one, the susceptibility parameters SσV , Scov and SσS exhibit the same sign. This is533

significant since the analysis in Figure 2 suggest that the sign of the second and third534

elements of the second–order derivative matrix are generally opposite to the sign of the535

first matrix element, which (at least partially) mitigates the impact of an increased or de-536

creased subpixel variability on the PPHB. Moreover, the magnitude of ∆τ and ∆reff de-537

pends on the position of RV and RS within the LUT and thus the magnitude of the respec-538

tive second–order derivatives. To study the impact of scale on the reliability of the PPHB539

predictions, the horizontal resolutions of both the subpixel and pixel–level ASTER obser-540

vations are varied between 30 − 960 m. Subsequently, ∆τ and ∆reff are derived for each541

scale combination following equation (3) and compared to the actually observed results.542

Figure 8(a) shows PDFs of the ratio τ
(
RV, RS

)
to τ (RV, RS), both with (blue) and543

without (black) a correction with calculated ∆τ, for subpixel ASTER observations with a544

horizontal resolution of 480 m and pixel–level data with a horizontal resolution of 960 m.545

This scenario means that both the VNIR and SWIR reflectances exhibit η = 4, which546

closely resembles measurements by the MODIS instrument. Similar to the results shown547

in Figure 6(a) for the 30 m subpixel resolution, the correction can successfully mitigate the548

mainly negative PPHB and for most observations the ratio is close to 1. This is also true549

for the correction of reff

(
RV, RS

)
with calculated ∆reff , which is shown in Figure 6(b).550

The correlation coefficient r between predicted and observed ∆τ and ∆reff for all551

combinations of subpixel and pixel–level horizontal resolutions is illustrated in Figure552

8(c). This analysis yields a multitude of combinations for most η values. As an example,553

η = 64 is achieved by 30 m subpixel data within 240 m pixels, 60 m data within 480 m pix-554

els, and 120 m data within 960 m pixels. The white line in Figure 8(c) represent the mean555

r for each η value, enclosed by a shaded area indicating plus/minus one standard devia-556

tion. Because of the decreased correlation for low optical thickness τ (RV, RS) < 5 (see557

section 4.2), both the ∆τ results for the complete data set (grey) and for τ (RV, RS) > 5558

(black) are shown. Similarly, ∆reff results from all pixels (cyan) and from pixels with559

τ (RV, RS) > 5 (blue) are shown individually. For reasonably thick clouds mean correla-560

tion coefficients show only a weak dependence on η, with r = 0.96 − 0.98 for ∆τ and561

r = 0.77 − 0.87 for ∆reff . Especially for the ∆τ correlations the standard deviations are562

very small, illustrating that all scale combinations for the respective η yield basically the563

same result. This illustrates that even if there is only a small number of available subpix-564
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Figure 8. (a) PDFs of the ratio of observed τ
(
RV, RS

)
to τ (RV, RS) (black) and the ratio of observed

τ

(
RV, RS

)
, which has been corrected by the predicted ∆τ based on equation (3), to τ (RV, RS) (blue). Val-

ues have been derived from subpixel data with a horizontal resolution of 480 m and pixel–level data with a

horizontal resolution of 960 m. (b) Same as (a) but for the effective droplet radius reff . (c) Pearson’s product–

moment correlation coefficient r for the correlation between observed and predicted ∆τ and ∆reff as a func-

tion of the number of available subpixels. White lines indicate the mean r for all possible combinations of

subpixel and pixel–level horizontal resolution, while shaded areas indicate the mean plus/minus one standard

deviation. The data set is separated into observations with τ
(
RV, RS

)
, τ (RV, RS) > 5 (black and blue for ∆τ

and ∆reff , respectively) and τ
(
RV, RS

)
, τ (RV, RS) > 0 (grey and cyan for ∆τ and ∆reff , respectively).
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568

569

570
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572
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575

els to calculate the variability vector
[
σ2

V, cov (RV, RS) , σ
2
S

]T
in equation (3), the predicted565

∆τ and ∆reff still are a reliable estimate of the actually observed PPHB.566

Including cloudy pixels with τ (RV, RS) < 5 in the analysis barely changes the cor-576

relation coefficients for ∆τ, except for η = 4. Here the results show a larger spread (il-577

lustrated by the larger standard deviation) and a smaller mean r = 0.88 (a decrease of578

about 0.09). For thin clouds a much stronger dependence of r on η is found for ∆reff .579

While for η = 1024, correlation coefficients reach a similar value as for the data set with580

τ (RV, RS) > 5, there is a significant decrease from r = 0.82 to r = 0.36 for η = 4. A581

similar behavior of ∆τ and ∆reff for decreasing η exists for the nRMSD. This dependence582

of r on η for thin clouds is mainly caused by the reduced retrieval sensitivity due to the583

convergence of the reff isolines in the LUT (see Figure 1 and the discussion in Zhang and584

Platnick 2011; Werner et al. 2013). This behavior of the LUT yields substantially higher585

uncertainties in the retrievals of reff

(
RV, RS

)
and reff (RV, RS) for low τ, which affects both586

the actually observed ∆reff and the calculation of the matrix of second–order derivatives587

in equation (3). The effect of increased uncertainties in the derived matrix elements is fur-588

ther magnified because for thin clouds with τ (RV, RS) < 5 there is considerable variability589

in the sign and value of each matrix element, as illustrated in Figures 2(d)–(e), and even590

the covariance and cross–reflectance terms have a large contribution to ∆reff . Conversely,591

uncertainty contributions from the truncation error in the derivation of equation (3) are592

found to be negligible. This was tested by calculating the relative third–order subpixel593
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Figure 9. (a) Probability density function (PDF) of the relative contributions δτi of the first (i = 1, black),

second (i = 2, blue) and third (i = 3, red) matrix elements to the overall PPHB ∆τ. Data is from 48 MBL

scenes sampled by ASTER off the coast of California. (b) Same as (a) but for the effective droplet radius bias

∆reff . (c) Joint probability density function of the first and second matrix element contributions δreff,1 and

δreff,2. (d) Same as (c) but for the first and third matrix element contributions δreff,1 and δreff,3.
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605

variabilities δ3V and δ3S, which are defined as:594

δ3V = 100 ·
∆R

3
V,i

RV

= 100 ·

1
n

n∑
i=1

(
RV,i − RV

)3

RV

δ3S = 100 ·
∆R

3
S,i

RS

= 100 ·

1
n

n∑
i=1

(
RS,i − RS

)3

RS

, (6)

for both VNIR and SWIR reflectances. Both terms exhibit very low values in the range595

of 0.04 − 0.6%, regardless of the spatial resolution of the observations. Given these small596

contributions, it is not surprising that predicted ∆τ and ∆reff , which are based on a form597

of equation (3) that includes third–order derivatives, yields indistinguishable results from598

the second–order PPHB predictions (not shown).599

5.3 PPHB Correction with a Single High–resolution Band600

To evaluate the feasibility of a PPHB correction based on a single high–resolution606

reflectance band in the VNIR, the relative contributions of individual matrix elements to607
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the overall PPHB are quantified for all 48 MBL cloud scenes. For the cloud optical thick-608

ness the individual contributions δτi (with i = 1, 2, 3 indicating the three respective matrix609

elements) to the total ∆τ are defined as:610

δτ1 = 100 ·
− 1

2
∂2τ(RV,RS)

∂2RV
RV

2
· H

2
σV

∆τ

δτ2 = 100 ·
−

∂2τ(RV,RS)
∂RV∂RS

RV RS · Hcov

∆τ

δτ3 = 100 ·
− 1

2
∂2τ(RV,RS)

∂2RS
RS

2
· H

2
σS

∆τ
. (7)

In a similar way the relative contributions δreff,i are defined as:611

δreff,1 = 100 ·
− 1

2
∂2

reff(RV,RS)
∂2RV

RV
2
· H

2
σV

∆reff

δreff,2 = 100 ·
−

∂2
reff(RV,RS)
∂RV∂RS

RV RS · Hcov

∆reff

δreff,3 = 100 ·
− 1

2
∂2

reff(RV,RS)
∂2RS

RS
2
· H

2
σS

∆reff
. (8)

Figure 9(a) shows PDFs of δτ1, δτ2 and δτ3, which are derived from all n = 59876 over-612

cast pixels that make up the statistical PPHB comparison in Figure 5. For the 48 MBL613

scenes most δτ1 are in the range of 80 − 130%, with a median value of 107%. This indi-614

cates a slight overestimation in predicted PPHB for most data points, if just the first ma-615

trix element is used to derive ∆τ. Both δτ2 and δτ3 have mostly negligible contributions,616

with median values of −6% and −1%, respectively. The negative sign indicates that the617

second and third matrix elements have a mostly positive sign, whereas the total PPHB for618

the cloud optical thickness is almost exclusively negative (see Figure 5(a)). The illustrated619

importance of the first matrix element to the overall negative τ bias confirms the findings620

in Figures 2(a)–(c). In this example LUT the first matrix element yields the main contri-621

bution to the overall ∆τ, except for very large τ.622

Figure 9(b) shows the PDFs of δreff,1, δreff,2 and δreff,3 for the same n = 59876 over-623

cast pixels. As predicted in Figures 2(d)–(f), all three matrix elements have a sizeable im-624

pact on ∆reff , with median values of 161%, 16% and −89% for the first, second and third625

matrix element, respectively. Similar to δτ1, δreff,1 has the same sign as the overall PPHB,626

while exceeding 100%. Conversely, δreff,2 is centered around 0% and δreff,3 is highly neg-627

ative.628

To understand the combination of individual elements better, a joint PDF of δreff,1629

and δreff,2 is shown in Figure 9(c). It is obvious that the second matrix element is usually630

much smaller than the first. The few pixels with larger δreff,2 contributions are character-631

ized by comparable δreff,1. There is a thin stripe of negative δreff,1, which is associated632

with very low effective droplet radius observations. A similar thin stripe is apparent in633

Figure 2(d), right at the upper boundary of the LUT. In this region the LUT starts to over-634

lap with itself and the reff retrievals become ambiguous. As a result, the predicted PPHB635

for these pixels is not very reliable. A similar joint PDF of δreff,1 and δreff,3 is shown in636

Figure 9(d). For most observations, δreff,1 is about twice as large as the absolute value of637

δreff,3. Again, a thin stripe of highly positive (negative) δreff,1 (δreff,3) is visible in the up-638

per right quadrant, associated with the multiple–solution space in the LUT (see Figures639

2(e)–(f)). The distribution of δreff,i illustrates that a prediction based on just the first ma-640

trix element in equation (3) yields an overestimated ∆reff . However, these results are still641

useful as an estimate of the upper PPHB limit for reff .642

–19–



Figure 10. (a) Scatter plot of observed versus predicted plane–parallel homogeneous bias (PPHB) for the

cloud optical thickness τ, derived from subpixel data with a horizontal resolution of 30 m and pixel–level

data with a horizontal resolution of 960 m. The prediction is only based on the first matrix element, shown

in Figure 2(a). Data is from 48 marine boundary layer scenes sampled off the coast of California, amounting

to n = 60943 pixels with a subpixel cloud cover Csub = 1. Colors indicate the respective pixel value of

τ (RV, RS). (b) Same as (a) but for the effective droplet radius reff . The prediction is only based on the first

matrix element, shown in Figure 2(d). (c) PDFs of the ratio of observed τ
(
RV, RS

)
(uncorrected in black,

corrected with the full matrix in blue, corrected with only the first matrix element in red) to τ (RV, RS). (d)

Same as (c), but for reff .
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The correlation between observed and predicted PPHB, based on only the first ma-652

trix elements in equation (3), is shown in Figures 10(a)–(b) for ∆τ and ∆reff , respectively.653

The number of overcast pixels in the analysis is slightly increased, from n = 59876 in654

Figure 5 to n = 60943, because only the first matrix element needs to be derived success-655

fully. When calculating the complete PPHB based on all elements the calculation of the656

second (cross–correlation) terms −
∂2τ(RV,RS)
∂RV∂RS

and −
∂2

reff(RV,RS)
∂RV∂RS

can fail at the edge of the657

LUT, because a higher number of step points is necessary to calculate the mixed numer-658

ical derivatives and there is a higher chance of points falling outside the solution space.659

There is still a high correlation between observed and predicted ∆τ with r = 0.98, while660

the nRMSD slightly increases from 0.25% to 0.29%. Figure 10(c) shows the results of a661

correction of the pixel–level retrievals with these new ∆τ values. Here, similar to Figure662
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6(c), PDFs of the ratio of corrected and uncorrected τ
(
RV, RS

)
to τ (RV, RS) are shown.663

There is a close agreement between the fully corrected results (blue), which use all three664

matrix elements, and the ones using only the first matrix element (red). A slight overesti-665

mation in the magnitude of predicted ∆τ, already indicated by the PDF in Figure 9(a), is666

visible and as a result the corrected pixel–level retrievals are slightly larger than the ones667

from the correction with all three matrix elements. Similar results are achieved for ∆reff ,668

as shown in Figure 10(b). Here, the predicted PPHB is slightly higher than the observed669

one, especially for small τ (RV, RS), and nRMSD=1.19% (up from nRMSD=0.87%). How-670

ever, the correlation coefficient is comparable to the prediction based on all three matrix671

elements and equation (3) yields a reliable estimate of ∆reff , which can be interpreted672

as the upper limit of the PPHB. This indicates that there are pixel where a correction of673

reff

(
RV, RS

)
with the new ∆reff values yields results that are slightly lower than the re-674

spective reff (RV, RS) (i.e., an overestimation of the PPHB). However, as shown in Figure675

10(d), this overestimation of ∆reff yields pixel–level retrievals that are still closer to the676

mean subpixel results than the uncorrected ones. Not only is the percentage of observa-677

tions with a ratio of 1 higher, the maximum deviations are also smaller than for the uncor-678

rected results. Because ∆LWP is determined by both ∆τ and ∆reff , all three matrix ele-679

ments are important in determining the PPHB for the liquid water path. Similar to ∆reff ,680

the first matrix element alone yields an overestimation of the actually observed PPHB.681

There is a reduced correlation of r = 0.662 between ∆LWP from only a single band and682

the full correction matrix. However, despite using only the first matrix element the median683

ratio of corrected pixel–level to mean subpixel LWP is 0.999.684

6 Summary and Discussion685

This study provides experimental validation and further evaluation of the mathemat-686

ical framework introduced in Z16, which expands the subpixel τ and reff retrievals into687

two–dimensional Taylor series of cloud top reflectances. This method decomposes the688

contributions from the retrieval sensitivity, determined by the shape of the LUT, and from689

the subpixel reflectance variability to the sign and magnitude of the PPHB. The frame-690

work is tested with ASTER observations at horizontal scales between 30− 1920 m sampled691

over 48 MBL cloud scenes with varying degrees of heterogeneity.692

ASTER cloud top reflectances RV and RS sampled at 30 m are used to retrieve high–693

resolution τ and reff , which subsequently yield the mean values of the subpixel results694

τ (RV, RS) and reff (RV, RS). RV and RS samples are aggregated to a horizontal resolution695

of 960 m and provide the pixel–level retrievals τ
(
RV, RS

)
and reff

(
RV, RS

)
. The difference696

between the pixel–level and mean high–resolution results yield the observed PPHB, which697

reaches values of up to −6.05 and 2.86 for ∆τ and ∆reff , respectively. For all analyzed698

pixels, the 1st percentile of observed ∆τ is −4.0%, while the 99th percentile of observed699

∆reff is +4.7%. Compared to the retrieval uncertainties the observed PPHB is about 27%700

(∆τ) and 20% (∆reff) in magnitude. While the impact of the PPHB seems small in com-701

parison, it is important to note that both ∆τ and ∆reff represent a bias that systematically702

affects the cloud property retrievals, independent from the retrieval uncertainty.703

A comparison between the observed ∆τ and ∆reff and predicted PPHB based on the704

framework introduced in Z16 reveals a good agreement, with correlation coefficients of705

r > 0.97 for ∆τ and r > 0.79 for ∆reff . Similar results are found for the bias in liquid706

water path (∆LWP), which can be derived as the product of τ and reff . For all analyzed707

pixels −20.90 g m−2 < ∆LWP < 10.96 g m−2, while the correlation between observed and708

predicted ∆LWP is r = 0.86. However, no systematic low or high PPHB is found for the709

liquid water path. A correction of the retrievals based on aggregated reflectances with pre-710

dicted ∆τ, ∆reff and ∆LWP mitigates the observed PPHB and yields a closer agreement711

between the pixel–level results and the mean values of the subpixel retrievals.712
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The reliability of the PPHB prediction is studied for: (i) varying horizontal resolu-713

tions of subpixel and pixel–level observations, which determines the number of available714

pixels η to calculate the subpixel reflectance variability; (ii) a limited mathematical frame-715

work with reflectances from only a single high–resolution band in the VNIR. Analysis (i)716

is necessary, because it is found that an increase in pixel–level (subpixel) horizontal reso-717

lution yields an increase (decrease) in subpixel reflectance variability, which together with718

the LUT shape determine the sign and magnitude of the PPHB. While no dependence of719

r on η is found for pixels with τ (RV, RS) > 5, a reduction of r for ∆reff exists for pixels720

with low optical thickness. The increased uncertainty in the ∆reff prediction can be ex-721

plained by an increased retrieval uncertainty due to the shape of the LUT, which impacts722

reff

(
RV, RS

)
and reff (RV, RS), as well as the distribution of the numerical derivatives in the723

Taylor series within the LUT. In contrast, contributions from higher–order terms, which724

are ignored in the Taylor expansion of τ and reff , are found to be negligible. Analysis (ii),725

meanwhile, is important because not all satellite–borne imagers provide high–resolution726

samples in the respective SWIR band. PPHB predictions based on just the VNIR band727

contributions show a slight overestimation of the observed PPHB, but overall there is a728

good agreement between predicted and observed ∆τ, ∆reff and ∆LWP. The fact that even729

limited observations of the subpixel reflectance variability are sufficient to mitigate the730

PPHB in pixel–level retrievals has important implications for the common satellite mis-731

sions that provide operational cloud retrievals, such as MODIS, VIIRS, and SEVIRI. It732

can also guide the instrument design for future satellite missions.733

Further studies will help to improve the predictions of ∆τ and ∆reff . An expansion734

of the analysis from 48 MBL scenes to hundreds of scenes is planned in the near future.735

This larger data set will allow for better statistics, as well as the opportunity to study the736

PPHB for different cloud types, environmental conditions and viewing geometries. In-737

cluding higher–order terms in the Taylor expansion of τ and reff might provide even more738

reliable PPHB estimates. However, numerical approximations of higher–order derivatives739

not only require a high–resolution LUT, the increased number of step points in the numer-740

ical derivation proves problematic at the edge of the LUT. The mathematical framework to741

predict the PPHB can also be expanded to the retrievals of cirrus cloud properties, which742

are usually derived by the split–window technique [Inoue, 1985; Parol et al., 1991]. Here,743

variabilities in the applied brightness temperatures are likewise inducing uncertainties in744

the retrieved cirrus variables [Fauchez et al., 2015], which requires a Taylor expansion by745

means of TIR observations and the analysis of second–order derivatives in completely dif-746

ferent LUTs.747

Finally, it is important to note that the framework presented in Z16 and this study748

merely provides the means to reliably derive pixel–level retrievals which are in close agree-749

ment with the mean high–resolution subpixel τ and reff retrievals. The possible impact750

of 3D radiative effects due to resolved variability (e.g., cloud shadows, illuminated cloud751

sides, photon leaking, radiative smoothing and scale breaks) might induce a reflectance752

variability that is wrongfully attributed to changes in the underlying cloud properties.753

In these circumstances, the mean high–resolution subpixel retrievals might not be repre-754

sentative of the true cloud properties. Following the discussion in Zhang et al. [2012],755

Z16 and this study, the pixel–level τ and reff retrievals based on IPA are predominantly756

smaller and larger compared to the mean subpixel properties, respectively. However, 3D757

radiative effects can impact higher–resolution retrievals and introduce significant biases to758

the true cloud variables. As reported by Varnai and Marshak [2001, 2002] and Marshak759

et al. [2006], the sign and magnitude of these biases are dependent on the solar geom-760

etry, cloud brightness and the distribution of shadowed and illuminated cloud elements761

within a scene, among others. Using a number of assumptions, these studies conclude that762

3D radiative effects induce a net overestimation in both τ and reff , while the bias for indi-763

vidual cloud elements can exhibit opposite signs and widely varying magnitudes. If both764

3D effects and the PPHB have a positive sign, mitigating ∆reff by means of equation (3)765

potentially yields results that are closer to the true reff . Conversely, negative ∆τ and posi-766
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tive biases from 3D radiative effects might (at least to a degree) offset each other. In this767

case, the uncorrected pixel–level τ retrievals might be good estimates of the true cloud768

properties. While the focus of this study is on the PPHB, a future study aims at applying769

the methods described in Varnai and Marshak [2002] to ASTER data to study biases for770

high–resolution remote sensing observations. However, to truly quantify the relative con-771

tributions of PPHB and 3D radiative effects a ground truth is necessary (i.e., knowledge of772

the true subpixel cloud properties), which could be achieved by future studies applying a773

combination of large–eddy simulations and both 1D and 3D radiative transfer solvers.774
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