16 research outputs found

    Boost Camp’, a universal school-based transdiagnostic prevention program targeting adolescent emotion regulation; evaluating the effectiveness by a clustered RCT : a protocol paper

    Get PDF
    Abstract Background The transition from childhood into adolescence can be considered as a critical developmental period. Moreover, adolescence is associated with a decreased use of adaptive emotion regulation strategies and an increased use of maladaptive emotion regulation strategies increasing the risk of emotional problems. Targeting emotion regulation is therefore seen as an innovative prevention approach. The present study aims to evaluate the effectiveness of Boost camp, an innovative school-based prevention program targeting ER, on adolescents’ emotion regulation skills and emotional wellbeing. Also secondary outcomes and possible moderators will be included. Methods The aim is to reach 300 adolescents (16 class groups, 6 schools) in their first year of high school. A clustered Randomized Controlled Trial (RCT) with two conditions, intervention (n = 150) and control (n = 150), will be set up. Adolescents in the intervention condition will receive 14 lessons over the course of 2 days, followed by Booster sessions, and will be compared with adolescents in a non-intervention control group. The outcomes will be measured by self-report questionnaires at baseline, immediately after Boost camp, and at three and 6 months follow-up. Discussion Data-collection is planned to be completed in May 2018. Data-analyses will be finished the end of 2018. The presented paper describes the Boost camp program and the clustered RCT design to evaluate its effectiveness. It is expected that Boost camp will have beneficial effects. If found effective, Boost camp will have the potential to increase adolescent’s ER and well-being, and reduce the risk to become adults in need. The trials is registered on the 13th of June 2017 in ISRCTN registry [ISRCTN68235634]

    From Late Miocene to Holocene: Processes of Differentiation within the Telestes Genus (Actinopterygii: Cyprinidae)

    Get PDF
    Investigating processes and timing of differentiation of organisms is critical in the understanding of the evolutionary mechanisms involved in microevolution, speciation, and macroevolution that generated the extant biodiversity. From this perspective, the Telestes genus is of special interest: the Telestes species have a wide distribution range across Europe (from the Danubian district to Mediterranean districts) and have not been prone to translocation. Molecular data (mtDNA: 1,232 bp including the entire Cyt b gene; nuclear genome: 11 microsatellites) were gathered from 34 populations of the Telestes genus, almost encompassing the entire geographic range. Using several phylogenetic and molecular dating methods interpreted in conjunction with paleoclimatic and geomorphologic evidence, we investigated the processes and timing of differentiation of the Telestes lineages. The observed genetic structure and diversity were largely congruent between mtDNA and microsatellites. The Messinian Salinity Crisis (Late Miocene) seems to have played a major role in the speciation processes of the genus. Focusing on T. souffia, a species occurring in the Danube and Rhone drainages, we were able to point out several specific events from the Pleistocene to the Holocene that have likely driven the differentiation and the historical demography of this taxon. This study provides support for an evolutionary history of dispersal and vicariance with unprecedented resolution for any freshwater fish in this region

    Les chercheurs sur contrat

    No full text
    info:eu-repo/semantics/publishe

    Cytogenetics of structural rearrangements in Musa hybrids and cultivars

    No full text
    Edible bananas are diploid or triploid Musa acuminata, or hybrids of M. acuminata x M. balbisi-ana, producing nutritious seedless fruit of different taste and structure. Breeding for high yield and host plant resistance to pathogens and pests as well as adaptation to abiotic stress of im-portant cultivars is challenging because of seedless and parthenocarpic fruit. In addition, cross-ings and selections of diploid cultivars and wild relatives are severely hampered by transloca-tions and inversions that are widespread in the M. acuminata populations. In this study we pre-sent an overview of cytogenetics, genetics and genomics research carried out to elucidate the meiotic chromosome behaviour in the hybrids and the mapping of genes, and to analyse the dif-ferent classes of DNA sequences in the banana genomes. Finally, we illustrate cytogenetic and linkage mapping of a diploid M. acuminata ssp. malaccensis using the diploid M. acuminata ‘Pa-hang’ as a genome reference and focus on the occurrence of structural rearrangements

    The SEA-UNICORN European COST Action: Advancing Knowledge on Marine Connectivity to Support Transition to a Sustainable Blue Economy

    Get PDF
    The European COST Action “Unifying Approaches to Marine Connectivity for improved Resource Management for the Seas” (SEA-UNICORN, 2020‐2025) is an international research coordination initiative that unites an interdisciplinary community of scientists and policymakers from over 100 organizations across Europe and beyond. It is establishing a globally harmonized framework to deliver actionable, transdisciplinary knowledge of marine functional connectivity, promoting a sustainable blue economy and ocean conservation. Planning sustainable development in rapidly changing oceans requires a thorough comprehension of marine biodiversity and the processes underpinning the functioning of ecosystems. Connectivity among marine populations and habitats facilitates the persistence and resilience of vulnerable species and ecosystems and controls the spread of invasive species. Constructing effective networks of restoration or conservation areas and promoting sustainable harvesting requires knowledge of connectivity. SEA-UNICORN advances worldwide collaboration by coordinating the collection, sharing, and application of knowledge on species, community, and ecosystem connectivity at sea and at the land‐sea interface. It engages scientists from diverse areas and early-career researchers and creates a stronger match between natural and social science and policy needs to better address key environmental issues that challenge the future of our planet
    corecore