115 research outputs found

    The Spectroscopic Orbits of Three Double-lined Eclipsing Binaries: I. BG Ind, IM Mon, RS Sgr

    Full text link
    We present the spectroscopic orbit solutions of three double-lines eclipsing binaries, BG Ind, IM Mon and RS Sgr. The first precise radial velocities (RVs) of the components were determined using high resolution echelle spectra obtained at Mt. John University Observatory in New Zealand. The RVs of the components of BG Ind and RS Sgr were measured using Gaussian fittings to the selected spectral lines, whereas two-dimensional cross-correlation technique was preferred to determine the RVs of IM Mon since it has relatively short orbital period among the other targets and so blending of the lines is more effective. For all systems, the Keplerian orbital solution was used during the analysis and also circular orbit was adopted because the eccentricities for all targets were found to be negligible. The first precise orbit analysis of these systems gives the mass ratios of the systems as 0.894, 0.606 and 0.325, respectively for BG Ind, IM Mon and RS Sgr. Comparison of the mass ratio values, orbital sizes and minimum masses of the components of the systems indicates that all systems should have different physical, dynamical and probable evolutionary status.Comment: 17 pages, 6 figures and 4 tables, accepted for publication in New Astronom

    Bi-allelic GAD1 variants cause a neonatal onset syndromic developmental and epileptic encephalopathy.

    Get PDF
    Developmental and epileptic encephalopathies are a heterogeneous group of early-onset epilepsy syndromes dramatically impairing neurodevelopment. Modern genomic technologies have revealed a number of monogenic origins and opened the door to therapeutic hopes. Here we describe a new syndromic developmental and epileptic encephalopathy caused by bi-allelic loss-of-function variants in GAD1, as presented by 11 patients from six independent consanguineous families. Seizure onset occurred in the first 2 months of life in all patients. All 10 patients, from whom early disease history was available, presented with seizure onset in the first month of life, mainly consisting of epileptic spasms or myoclonic seizures. Early EEG showed suppression-burst or pattern of burst attenuation or hypsarrhythmia if only recorded in the post-neonatal period. Eight patients had joint contractures and/or pes equinovarus. Seven patients presented a cleft palate and two also had an omphalocele, reproducing the phenotype of the knockout Gad1-/- mouse model. Four patients died before 4 years of age. GAD1 encodes the glutamate decarboxylase enzyme GAD67, a critical actor of the γ-aminobutyric acid (GABA) metabolism as it catalyses the decarboxylation of glutamic acid to form GABA. Our findings evoke a novel syndrome related to GAD67 deficiency, characterized by the unique association of developmental and epileptic encephalopathies, cleft palate, joint contractures and/or omphalocele

    A new hope for obesity management: Boron inhibits adipogenesis in progenitor cells through the Wnt/β-catenin pathway

    Get PDF
    © 2017Obesity is a worldwide medical problem resulting in serious morbidity and mortality involving differentiation of pre-adipocytes into mature adipocytes (adipogenesis). Boron treatment has been reported to be associated with weight reduction in experimental animals; however, its effects on pre-adipocyte differentiation and anti-adipogenic molecular mechanisms are unknown. In this study, we demonstrate the inhibitory activities of boric acid (BA) and sodium pentaborate pentahydrate (NaB) on adipogenesis using common cellular models. Boron treatment repressed the expression of adipogenesis-related genes and proteins, including CCAAT-enhancer-binding protein α and peroxisome proliferator-activated receptor γ, by regulating critical growth factors and the β-catenin, AKT, and extracellular signal-regulated kinase signaling pathways. In addition, although boron treatment did not induce apoptosis in pre-adipocytes, it depressed mitotic clonal expansion by regulation of cell cycle genes. Overall, these data offer promising insights into the prevention/treatment of obesity and associated diseases

    Synthesis of Well-Defined, Surfactant-Free Co<sub>3</sub>O<sub>4</sub> Nanoparticles:The Impact of Size and Manganese Promotion on Co<sub>3</sub>O<sub>4</sub> Reduction and Water Oxidation Activity

    Get PDF
    Abstract: A surfactant-free synthetic route has been developed to produce size-controlled, cube-like cobalt oxide nanoparticles of three different sizes in high yields. It was found that by using sodium nitrite as salt-mediating agent, near-quantitative yields could be obtained. The size of the nanoparticles could be altered from 11 to 22 nm by changing the cobalt concentration and reaction time. These surfactant-free nanoparticles form ideal substrates for facile deposition of further elements such as manganese. The effect of size of the cobalt oxide nanoparticles and the presence of manganese on the reducibility of cobalt oxide to metallic cobalt was investigated. Similarly, the effect of these parameters was investigated with a visible light promoted water oxidation system with cobalt oxide as catalyst, together with [Ru(bpy) 3] 2+ light harvester dye and an electron acceptor. Graphical Abstract: A novel surfactant-free synthetic route has been developed to produce size-controlled, cube shaped cobalt oxide nanoparticles in high yields. [Figure not available: see fulltext.]. </p

    Novel VLDLR microdeletion identified in two Turkish siblings with pachygyria and pontocerebellar atrophy

    Get PDF
    Congenital ataxia with cerebellar hypoplasia is a heterogeneous group of disorders that presents with motor disability, hypotonia, incoordination, and impaired motor development. Among these, disequilibrium syndrome describes a constellation of findings including nonprogressive cerebellar ataxia, mental retardation, and cerebellar hypoplasia following an autosomal recessive pattern of inheritance and can be caused by mutations in the Very Low Density Lipoprotein Receptor (VLDLR). Interestingly, while the majority of patients with VLDLassociated cerebellar hypoplasia in the literature use bipedal gait, the previously reported patients of Turkish decent have demonstrated similar neurological sequelae, but rely on quadrupedal gait. We present a consanguinous Turkish family with two siblings with cerebellar atrophy, predominantly frontal pachygyria and ataxic bipedal gait, who were found to have a novel homozygous deletion in the VLDLR gene identified by using high-density single nucleotide polymorphism microarrays for homozygosity mapping and identification of CNVs within these regions. Discovery of disease causing homozygous deletions in the present Turkish family capable of maintaining bipedal movement exemplifies the phenotypic heterogeneity of VLDLRassociated cerebellar hypoplasia and ataxia. © Springer-Verlag 2010

    Properties of Heavy Secondary Fluorine Cosmic Rays: Results from the Alpha Magnetic Spectrometer

    Get PDF
    Precise knowledge of the charge and rigidity dependence of the secondary cosmic ray fluxes and the secondary-to-primary flux ratios is essential in the understanding of cosmic ray propagation. We report the properties of heavy secondary cosmic ray fluorine F in the rigidity R range 2.15 GV to 2.9 TV based on 0.29 million events collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. The fluorine spectrum deviates from a single power law above 200 GV. The heavier secondary-to-primary F/Si flux ratio rigidity dependence is distinctly different from the lighter B/O (or B/C) rigidity dependence. In particular, above 10 GV, the F/SiB/O ratio can be described by a power law Rδ with δ=0.052±0.007. This shows that the propagation properties of heavy cosmic rays, from F to Si, are different from those of light cosmic rays, from He to O, and that the secondary cosmic rays have two classes
    corecore