203 research outputs found
The interplay between residential location and cycling choice: the case of two metropolitan areas in Sardinia, Italy
The current paper aims to enrich the current understanding of the link between the choice of residential location, the propensity to cycle to work and the propensity to cycle for non-commuting purposes. To highlight the relationship among these choice dimensions we used a composite econometric model that allows for the joint modelling of multiple outcomes. Residential location and cycling propensities are modelled as a function of socio-demographic and level-of-service variables. The inclusion of common error terms allows us to control for self-selection and unobserved effects that can simultaneously influence the underlying propensities. The data for this study is drawn from a survey conducted in the metropolitan areas of Cagliari and Sassari (Sardinia, Italy) in 2016 among a sample of local employees. The sample comprises 2,128 observations. Our results indicate that a significant portion of unobserved variance between the residential location choice and the propensity to cycle for non-commuting reasons exists, suggesting the presence of a self-selection effect
Real-Time neural signal decoding on heterogeneous MPSocs based on VLIW ASIPs
An important research problem, at the basis of the development of embedded systems for neuroprosthetic applications, is the development of algorithms and platforms able to extract the patient's motion intention by decoding the information encoded in neural signals. At the state of the art, no portable and reliable integrated solutions implementing such a decoding task have been identified. To this aim, in this paper, we investigate the possibility of using the MPSoC paradigm in this application domain. We perform a design space exploration that compares different custom MPSoC embedded architectures, implementing two versions of a on-line neural signal decoding algorithm, respectively targeting decoding of single and multiple acquisition channels. Each considered design points features a different application configuration, with a specific partitioning and mapping of parallel software tasks, executed on customized VLIW ASIP processing cores. Experimental results, obtained by means of FPGA-based prototyping and post-floorplanning power evaluation on a 40nm technology library, assess the performance and hardware-related costs of the considered configurations. The reported power figures demonstrate the usability of the MPSoC paradigm within the processing of bio-electrical signals and show the benefits achievable by the exploitation of the instruction-level parallelism within tasks
Multimodal-based Diversified Summarization in Social Image Retrieval
In this paper, we describe our approach and its results for the MediaEval 2015 Retrieving Diverse Social Images task. The main strength of the proposed approach is its flexibility that permits to filter out irrelevant images, and to obtain a reli- able set of diverse and relevant images. This is done by first clustering similar images according to their textual descrip- tions and their visual content, and then extracting images from different clusters according to a measure of userâs cred- ibility. Experimental results shown that it is stable and has little fluctuation in both single-concept and multi-concept queries
Promoting the learning of modern and contemporary physics in high schools in informal and non-formal contexts
In this paper, we introduce active learning strategies developed by the Educational Division of the Physics Department of the University of Cagliari to promote the learning of modern and contemporary physics (e.g., general relativity, particle physics, cosmology, and related topics) in high schools in informal and nonformal contexts. We discuss their features and potential role in facilitating science and physics instruction by integrating pedagogical theory and education research. We illustrate our theoretical framework and the methodologies we implemented to design specific educational strategies âand the evaluation of their effectivenessâ to improve motivation, curiosity, and interest in modern and contemporary physics, as well as bring these topics more extensively to high schools. Finally, examples of the proposed educational activities are presented and their implications in informal and non-formal contexts are discussed
The ASIMOV Prize for scientific publishing - HEP researchers trigger young people toward science
This work presents the ASIMOV Prize for scientific publishing, which was launched in Italy in 2016. The prize aims to bring the young generations closer to scientific culture, through the critical reading of popular science books. The books are selected by a committee that includes scientists, professors, Ph.D. and Ph.D. students, writers, journalists and friends of culture, and most importantly, over 800 school teachers. Students are actively involved in the prize, according to the best practices of public engagement: they read, review the books and vote for them, choosing the winner. The experience is quite successful: 12,000 students from 270 schools all over Italy participated in the last edition.
The possibility of replicating this experience in other countries is indicated, as was done in Brazil in 2020 with more than encouraging results
Set It and Forget It! Turnkey ECC for Instant Integration
Historically, Elliptic Curve Cryptography (ECC) is an active field of applied
cryptography where recent focus is on high speed, constant time, and formally
verified implementations. While there are a handful of outliers where all these
concepts join and land in real-world deployments, these are generally on a
case-by-case basis: e.g.\ a library may feature such X25519 or P-256 code, but
not for all curves. In this work, we propose and implement a methodology that
fully automates the implementation, testing, and integration of ECC stacks with
the above properties. We demonstrate the flexibility and applicability of our
methodology by seamlessly integrating into three real-world projects: OpenSSL,
Mozilla's NSS, and the GOST OpenSSL Engine, achieving roughly 9.5x, 4.5x,
13.3x, and 3.7x speedup on any given curve for key generation, key agreement,
signing, and verifying, respectively. Furthermore, we showcase the efficacy of
our testing methodology by uncovering flaws and vulnerabilities in OpenSSL, and
a specification-level vulnerability in a Russian standard. Our work bridges the
gap between significant applied cryptography research results and deployed
software, fully automating the process
MiRNA dysregulation underlying common pathways in type 2 diabetes and cancer development. an Italian Association of Medical Oncology (AIOM)/Italian Association of Medical Diabetologists (AMD)/Italian Society of Diabetology (SID)/Italian Society of Endocrinology (SIE)/Italian Society of Pharmacology (SIF) multidisciplinary critical view
Increasing evidence suggests that patients with diabetes, particularly type 2 diabetes (T2D), are characterized by an increased risk of developing different types of cancer, so cancer could be proposed as a new T2D-related complication. On the other hand, cancer may also increase the risk of developing new-onset diabetes, mainly caused by anticancer therapies. Hyperinsulinemia, hyperglycemia, and chronic inflammation typical of T2D could represent possible mechanisms involved in cancer development in diabetic patients. MicroRNAs (miRNAs) are a subset of non-coding RNAs, â22 nucleotides in length, which control the post-transcriptional regulation of gene expression through both translational repression and messenger RNA degradation. Of note, miRNAs have multiple target genes and alteration of their expression has been reported in multiple diseases, including T2D and cancer. Accordingly, specific miRNA-regulated pathways are involved in the pathogenesis of both conditions. In this review, a panel of experts from the Italian Association of Medical Oncology (AIOM), Italian Association of Medical Diabetologists (AMD), Italian Society of Diabetology (SID), Italian Society of Endocrinology (SIE), and Italian Society of Pharmacology (SIF) provide a critical view of the evidence about the involvement of miRNAs in the pathophysiology of both T2D and cancer, trying to identify the shared miRNA signature and pathways able to explain the strong correlation between the two conditions, as well as to envision new common pharmacological approaches
Serum Neurotrophin Profile in Systemic Sclerosis
International audienceBACKGROUND: Neurotrophins (NTs) are able to activate lymphocytes and fibroblasts; they can modulate angiogenesis and sympathic vascular function. Thus, they can be implicated in the three pathogenic processes of systemic sclerosis (SSc). The aims of this study are to determine blood levels of Nerve Growth Factor (NGF), Brain-Derived Neurotrophic Factor (BDNF) and Neurotrophin-3 (NT-3) in SSc and to correlate them with clinical and biological data.METHODS: Serum samples were obtained from 55 SSc patients and 32 control subjects to measure NTs levels by ELISA and to determine their relationships with SSc profiles. FINDINGS: Serum NGF levels were higher in SSc patients (288.26 ± 170.34 pg/mL) than in control subjects (170.34 ± 50.8 pg/mL, p<0.001) and correlated with gammaglobulins levels and the presence of both anti-cardiolipin and anti-Scl-70 antibodies (p<0.05). In contrast, BDNF levels were lower in SSc patients than in controls (1121.9 ± 158.1 vs 1372.9 ± 190.9 pg/mL, p<0.0001), especially in pulmonary arterial hypertension and diffuse SSc as compared to limited forms (all p<0.05). NT-3 levels were similar in SSc and in the control group (2657.2 ± 2296 vs 2959.3 ± 2555 pg/mL, NS). BDNF levels correlated negatively with increased NGF levels in the SSc group (and not in controls). CONCLUSION: Low BDNF serum levels were not previously documented in SSc, particularly in the diffuse SSc subset and in patients with pulmonary hypertension or anti-Scl-70 antibodies. The negative correlation between NGF and BDNF levels observed in SSc and not in healthy controls could be implicated in sympathic vascular dysfunction in SSc
On the universality of thermodynamics and η/s ratio for the charged Lovelock black branes
Abstract: We investigate general features of charged Lovelock black branes by giving a detailed description of geometrical, thermodynamic and holographic properties of charged Gauss-Bonnet (GB) black branes in five dimensions. We show that when expressed in terms of effective physical parameters, the thermodynamic behaviour of charged GB black branes is completely indistinguishable from that of charged Einstein black branes. Moreover, the extremal, near-horizon limit of the two classes of branes is exactly the same as they allow for the same AdS2 Ă R3, near-horizon, exact solution. This implies that, although in the UV the associated dual QFTs are different, they flow in the IR to the same fixed point. The calculation of the shear viscosity to entropy ratio η/s confirms these results. Despite the GB dual plasma has in general a non-universal temperature-dependent η/s, it flows monotonically to the universal value 1/4Ï in the IR. For negative (positive) GB coupling constant, η/s is an increasing (decreasing) function of the temperature and the flow respects (violates) the KSS bound
- âŠ