
Journal of Systems Architecture 76 (2017) 89–101

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Real-Time neural signal decoding on heterogeneous MPSocs based on

VLIW ASIPs

Paolo Meloni a , ∗, Claudio Rubattu

a , Giuseppe Tuveri a , Danilo Pani a , Luigi Raffo

a ,
Francesca Palumbo

b

a Dipartimento Ingegneria Elettrica ed Elettronica, Università degli Studi di Cagliari, Cagliari, 09123, Italy
b PolComIng – Gruppo Ingegneria dell’Informazione, Università degli Studi di Sassari, Sassari, 07100, Italy

a r t i c l e i n f o

Article history:

Received 5 February 2016

Revised 31 August 2016

Accepted 15 November 2016

Available online 19 November 2016

Keywords:

Neural signal decoding

MPSoCS

ASIPs

Design space exploration

Low power

a b s t r a c t

An important research problem, at the basis of the development of embedded systems for neuropros-

thetic applications, is the development of algorithms and platforms able to extract the patient’s motion

intention by decoding the information encoded in neural signals. At the state of the art, no portable

and reliable integrated solutions implementing such a decoding task have been identified. To this aim,

in this paper, we investigate the possibility of using the MPSoC paradigm in this application domain.

We perform a design space exploration that compares different custom MPSoC embedded architectures,

implementing two versions of a on-line neural signal decoding algorithm, respectively targeting decod-

ing of single and multiple acquisition channels. Each considered design points features a different ap-

plication configuration, with a specific partitioning and mapping of parallel software tasks, executed on

customized VLIW ASIP processing cores. Experimental results, obtained by means of FPGA-based proto-

typing and post-floorplanning power evaluation on a 40nm technology library, assess the performance

and hardware-related costs of the considered configurations. The reported power figures demonstrate the

usability of the MPSoC paradigm within the processing of bio-electrical signals and show the benefits

achievable by the exploitation of the instruction-level parallelism within tasks.

© 2016 Elsevier B.V. All rights reserved.

1

o

t

p

c

s

p

o

t

o

r

w

b

g

o

T

f

o

p

w

d

e

p

a

m

p

p

c

c

a

h

1

. Introduction

A key research topic in bioengineering relates with the devel-

pment of neuro-controlled prosthetic systems. Within such sys-

ems, a robotic active prosthesis is controlled to respond to the

atient’s motion intention, identified by means of an adequate de-

oding of the information carried by electrophysiological neural

ignals. Among different approaches, a solution that appears very

romising and effective is represented by neuroprostheses that rely

n the sensing of Peripheral Nervous System (PNS) signals [1] . In

his kind of devices, the signal to be decoded is acquired by means

f electrodes implanted in the residual nerves near the amputation

egion, in order to allow the amputee to exploit the natural path-

ays of motor control. Thus, prostheses relying on PNS sensing can

e more easily perceived by the patient, compared to electromyo-

raphic ones.
∗ Corresponding author.

E-mail addresses: Paolo.Meloni@diee.unica.it , paolo.meloni@diee.unica.it (P. Mel-

ni), Claudio.Rubattu@diee.unica.it (C. Rubattu), Giuseppe.Tuveri@diee.unica.it (G.

uveri), Danilo.Pani@diee.unica.it (D. Pani), Luigi.Raffo@diee.unica.it (L. Raffo),

palumbo@uniss.it (F. Palumbo).

M

t

p

a

s

g

ttp://dx.doi.org/10.1016/j.sysarc.2016.11.005

383-7621/© 2016 Elsevier B.V. All rights reserved.
The identification of motion intention is performed by means

f complex decoding algorithms, that analyse neural spikes , tem-

oral sequences of action potentials that show a typical impulsive

aveform, fired by excited motor neurons. The starting point of

ecoding is usually a Spike sorting phase [2] , that identifies spikes

mitted by different neurons looking at their morphology.

Decoding algorithms are computationally intensive, since sam-

ling frequency required by neural signals [3] are relatively high

nd usually signal acquisition from multiple channels has to be

anaged [4] . Moreover, application requires execution on highly

ortable embedded processing system, wearable or even im-

lantable, with very limited budget in terms of power and energy

onsumption, and, at the same time, must comply with real-time

onstraints.

This work proposes a solution that exploits the intrinsic par-

llelism in the considered application, executing it on a custom

ulti-Processor System-on-Chip (MPSoC). In this way, we combine

he processing power provided by the MPSoC paradigm with the

ower/energy efficiency that can be obtained by means of macro-

rchitectural and micro-architectural customization. We consider a

tate-of-the-art PNS signal decoding algorithm [5] , that achieves

ood performance even in case of low Signal-to-Noise Ratio (SNR)

http://dx.doi.org/10.1016/j.sysarc.2016.11.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2016.11.005&domain=pdf
mailto:Paolo.Meloni@diee.unica.it
mailto:paolo.meloni@diee.unica.it
mailto:Claudio.Rubattu@diee.unica.it
mailto:Giuseppe.Tuveri@diee.unica.it
mailto:Danilo.Pani@diee.unica.it
mailto:Luigi.Raffo@diee.unica.it
mailto:fpalumbo@uniss.it
http://dx.doi.org/10.1016/j.sysarc.2016.11.005

90 P. Meloni et al. / Journal of Systems Architecture 76 (2017) 89–101

a

s

c

c

a

c

n

m

e

t

a

f

p

o

3

t

d

i

p

t

s

e

t

c

t

a

t

t

s

s

i

f

t

t

h

4

t

conditions, both on animals [5] and humans [6] . Our work con-

siders such algorithm as a target and takes as reference an ar-

chitectural template and a library of configurable building ele-

ments that expose a wide scope of customization knobs. We pro-

pose a design space exploration (DSE), comparing multiple hard-

ware/software MPSoC configurations in terms of throughput and

hardware costs.

The remainder of this paper is organized as follows.

Section 2 presents previous works. Section 3 describes in general

the system to be implemented and the adopted design strategy.

The target state-of-the-art algorithm [5] is presented in Section 4 .

Section 5 describes the reference MPSoC architectural template,

while Section 6 defines the programming model. Section 7 dis-

cusses in detail the DSE results. Section 11 concludes with some

final remarks.

2. Related works

As already explained in Section 1 , spike sorting analyzes the

morphology of spikes in order to identify the firing activity of the

different neurons [2] . Neural signal processing has been addressed

in several previous works, mostly using FPGAs as target implemen-

tation technology [7,8] , with the aim of improving flexibility, with

respect to ASICs [9,10] , and performance, by means of parallelism

exploitation, with respect to general-purpose processors.

In [7] , a low-power nano-FPGA is used to implement a fully im-

plantable programmable neuroprocessor. The system takes care of

data acquisition and reduces the output bit-rate using a compres-

sion algorithm that exploits the sparse representation of the neural

signals. In this way, it overcomes the bandwidth limitation of wire-

less telemetry, transmitting only the samples associated to the de-

tected spikes to an external computing platform that implements

a cortically-controlled Brain-Machine Interfaces. The system func-

tionality has been assessed using a dataset of raw extracellular sig-

nals recorded through microelectrode arrays chronically implanted

in the brain of sedated rats.

The feasibility of this approach in terms of power has been in-

vestigated on standard CMOS VLSI [11] . In this approach, the com-

putational complexity is shifted at downstream of the implantable

device in order to perform the decoding which can be performed

on many-core platforms [12] or FPGA-accelerated solutions [13] .

Other works have targeted energy-efficient implementation of

multi-channel spike sorting [14] , dealing in general with signals

coming from the Central Nervous System (CNS), focusing on the

analysis of requirements, in terms of hardware resources and accu-

racy, of some processing steps of spike sorting algorithms [15,16] .

Such implementations exploit massive parallelization and cannot

comply with the low-power requirements posed by wearable or

implantable approaches.

Coarse-grained reconfigurable approaches, accelerating some

computational intensive kernels using a reduced set of hardware

resources [17,18] , have also been presented. In this case, hardware

reuse maximization is combined with latency minimization to sat-

isfy the relatively strict timing constraints. However, even if pro-

viding a certain degree of flexibility, such approach is not pro-

grammable and does not provide adequate support to prospective

improvements of the device, that could be obtained by means of

updated versions of the decoding algorithm.

In [19] , a homogeneous MPSoC architecture has been used to

preliminary test the porting of a neural signal decoding algorithm

on parallel processing platforms. Results have shown that real-

constraints can be satisfied by clocking the system at a reasonable

frequency and taking profit from the parallelism to reduce power

consumption using a clock-gating programmable manager. The ap-

plication code has been parallelized effectively using an approach

based on software pipelined.
Our work is in line with [19] , since it presents a multi-processor

rchitecture, but it enhances the fine tuning of the system with re-

pect to the considered application, exploiting micro-architecture

ustomization by adopting Application Specific Instruction-set Pro-

essors (ASIPs) as building blocks. In [20] and in [21] a similar

nalysis is performed, building a final system that consists in a

ustom heterogeneous MPSoC structure. However such works do

ot consider the exploitation of instruction-level parallelism as a

ethod to reduce computation latency, thus a main point of nov-

lty of our work is the extension of the design space exploration

o the evaluation of internal parallelism in multiple issue processor

rchitectures. This paper is an extension of [20] , that makes a step

orward in the evaluation of the MPSoC paradigm in neural signal

rocessing by considering the execution of the decoding algorithm

n multiple acquisition channel.

. General application and design strategy overview

This paper aims at evaluating the possibility of designing a cus-

om ASIP-based MPSoC implementing an integrated neural signal

ecoding algorithm. The main objective, as represented in Fig. 1 ,

s to target a digital processing platform capable of processing in-

uts acquired by invasive electrodes applied on PNS terminations,

o ease the control of a prosthetic bionic hand. In the prospective

ystem, the electric signals are firstly treated by an analog front-

nd that applies a first denoising stage and converts them to digi-

al format. Several channels are acquired in parallel, the number of

hannels can vary, but 8 is a typical value for state-of-the-art elec-

rodes. The signal samples corresponding to the different channels

re produced in input to the Digital Processing Platform, which is

he subject of this paper. As shown in Fig. 1 , the platform executes

hree main actions: it cleans the signal from the noise, detects

pikes and identifies their similarity with a set of known templates

tored in memory. The execution of these steps allows to propagate

nformation to a classifier, implemented in a non implantable plat-

orm with more relaxed power constraints, that actually recognizes

he motion intention and controls the mechatronic part of the sys-

em. The overall design strategy that we have chosen in this paper

as two main key points:

• we choose to use ASIP technology, to allow implementation of

a power- and performance-effective solution, without giving up

on programmability. After the design, a user, prospectively a

biomedical engineer or a clinician, can tune the parameters of

the algorithm using only software programming. This operation

does not require a hardware expert to manage a refinement

of the algorithm. Moreover, in case of implanted solution, new

software releases can be downloaded to the device simply as

new instruction bitstreams.

• An integrated solution has to be developed to reduce the com-

munication bitrate required to send information to the external

environment. Moving the spike sorting to the non-implantable

processing platform working as classifier would require all the

samples acquired by the electrode to be transmitted in output

through the communication mean between the two platforms.

Especially in case of an implanted device, this link is expected

to be a low-power wireless communication module, thus with

unsufficient bitrate to transmit such a data rate. In an inte-

grated solution, after the spike sorting, a simple ID and a time

stamp information are associated to each detected event, thus

the required channel capacity is significantly decreased.

. Target application and constraints

As mentioned, three subsequent phases, described in more de-

ails in the following sections, are addressed in this paper:

P. Meloni et al. / Journal of Systems Architecture 76 (2017) 89–101 91

Fig. 1. Target application overview.

Fig. 2. Application task graph.

t

c

s

m

S

o

t

t

b

a

8

w

fi

p

h

t

p

c

c

t

b

d

a

s

r

i

t

4

W

t

a

F

o

t

t

o

t

i

p

s

p

m

a

a

d

p

p

o
• Wavelet Denoising – It removes the noise that affects the signal

to be processed.

• Spike Detection – It extracts the spikes from the filtered input

signal.

• Spike Sorting – It identifies which motor neuron has generated

the detected spike. The algorithm calculates for each spike its

cross-correlation with all the elements in a set of known ref-

erence spike templates and outputs the spike-template couple

with the highest similarity.

The results of the Spike Sorting phase are sent as output,

hrough a wireless network interface. The bandwidth required to

ommunicate with the external environment is minimal. While

ending in output all the raw acquired signal would require a com-

unication bandwidth of around 2 Mbit/s, embedding the Spike

orting phase in the integrated processing device allows to send

nly the ID of the most similar template. Taking into account that

he firing rate of single motor neurons at the level of the hand is

ypically between 8 and 25 spikes per second [22] , the low num-

er of neurons per active electrode site (which is from 8 to 10 [23])

nd the number of active sites of an intraneural electrode (usually

–12, [24]), such communication requires a much reduced band-

idth, around 35 Kbit/s.

The Movement Intention Decoding , achieved by means of classi-

cation, is not addressed in this paper. It can be performed on the

rosthetic hand, by the non-implantable controller. This will allow

aving more relaxed requirements in terms of power consumption.

In [19] , the digital processing section of the targeted applica-

ion, integrating the above-mentioned phases that are going to be

rospectively performed on the implantable device, has been exe-

uted on a general purpose processor in order to characterize the

omputation. As a result of such a profiling and of the evalua-

ion of the execution latency of each phase, the computation has
een partitioned into the tasks depicted in Fig. 2 . This task graph,

epicting the processing flow, highlights data dependency and

vailable parallelism. In this paper, since we are referring to the

ame algorithm, the same partitioning will be also adopted. The

est of this section provides some insights of each single process-

ng phase, with special emphasis on the constraints characterizing

hem.

.1. Phase I – Wavelet Denoising

The Wavelet Denoising phase is composed of a unique task, the

avelet Denoising (WD) one. This task processes the input samples

o remove the additive noise affecting the signal of interest. An ex-

mple of the signal pre and post Wavelet Denoising is depicted in

ig. 3 . In this phase a three-step non-linear filtering scheme, based

n multi-level decomposition, thresholding and reconstruction of

he input signal is implemented.

Algorithmically, the choice of the mother wavelet determines

he structure of the filters composing the processing trellis. In case

f orthogonal wavelets, such as the Haar one chosen in this work,

hey are Quadrature Mirror Filters (QMF). QMF, coupled to a dec-

mated schema, leads to very efficient solutions. Since such ap-

roaches cannot ensure shift invariance, which is important to pre-

erve the shape of short spiky signals, an undecimated à trous im-

lementation has been selected here as in [25] . This solution is

ore expensive both computationally and in terms of memory us-

ge.

With an undecimated schema, the processing trellis is simply

 cascaded filter bank, with the thresholding step halfway, so the

ominant processing operation is the convolution. In a streaming

rocessing model (computation of one sample out for each sam-

le in), this reduces to several dot products, in turn composed

f multiply-and-accumulate operations. According to [5] , the sam-

92 P. Meloni et al. / Journal of Systems Architecture 76 (2017) 89–101

Fig. 3. Phase I: effect of Wavelet Denoising.

Fig. 4. Phase II: effect of Spike Detection.

4

i

s

c

m

b

d

i

t

o

(
pling rate of the incoming neural signal is 12 ksamples per second.

The thresholds applied within the thresholding phase are four and

must be computed offline and pre-loaded at the bootstrap of the

prosthetic device.

4.2. Phase II – Spike Detection

The Spike Detection phase is composed of two tasks, namely

NEO and Spike Extraction (SE). NEO stands for non-linear energy op-

erator . This task computes the NEO feature signal, defined as:

NEO { x [n] } = x 2 [n] − x [n + 1] · x [n − 1] (1)

on the Wavelet Denoising output x . The spike detection threshold

is computed as a scaled version with an empirically chosen con-

stant C of the mean value of the NEO in a predefined window of

N samples:

T h = C
1

N

N ∑

n =1

NEO { x [n] } (2)

Spike identification is then left to the SE task, which selects the

relevant windows in the NEO signal: those above the computed

threshold are recognized as windows containing spike activity. The

identified samples, which contain a spike, are stored in a buffer to

be passed to the Spike Sorting phase.

An example of the signal pre and post Spike Detection is de-

picted in Fig. 4 where, starting from the input denoised signal, a

clearly identified spike is extracted.
.3. Phase III – Spike Sorting

The Spike Sorting phase is by far the most computationally-

ntensive one. It is composed of several different tasks. It is re-

ponsible for identifying which motor neuron has produced the

onsidered spike. This identification process is performed by deter-

ining the similarity of an incoming spike, produced as an output

y the Spike Detection phase, with the i th reference template. To

o that, the maximum Pearson’s correlation coefficient, descend-

ng from the cross-correlation analysis, is associated to the spike-

emplate couple.

In the proposed implementation, both the maximum number

f samples in a spike and in a template (Len) has been set to 40

3.3 ms). To evaluate the best alignment, for each detected spike,

P. Meloni et al. / Journal of Systems Architecture 76 (2017) 89–101 93

t

t

t

P

t

v

w

o

i

w

t

i

p

4

d

h

5

5

S

a

t

a

p

s

S

b

n

p

a

t

k

t

[

d

p

c

5

c

E

s

o

b

a

u

s

s

a

t

m

6

p

s

i

s

i

t

i

e

a

o

t

p
he relative samples are stored in a buffer with 2 · Len = 80 loca-

ions, placing the element with the maximum amplitude value in

he center of the buffer. Then the algorithm starts calculating the

earson’s correlation coefficient for each different overlapping be-

ween the buffer and the reference template, and the maximum

alue is taken as result. Each coefficient is obtained considering a

indow of Len samples out of 2 · Len , then shifting the window by

ne position to evaluate a new overlapping.

In [19] , as shown in Fig. 2 , the Spike Sorting phase is partitioned

n three steps. The first two steps perform some pre-processing,

hile the third one is in charge of the actual coefficients calcula-

ion and template identification.

• The Spike Standardization (SS) tasks: the reference algorithm

adopts a normalized cross-correlation method, thus samples are

pre-processed in order to have zero mean and unit variance (we

assume the same processing to be performed offline for the ref-

erence templates). These tasks take place only once per spike,

for each different overlapping out of Len .

• The Spike vs template cross-correlation tasks: different templates

have to be cross-checked to determine which neuron produced

the spike, thus cross-correlation has to be computed for each

of them. Nevertheless, parallel computations can be performed

and the corresponding node in the task graph can be replicated

to evaluate, in a concurrent manner, the similarity with differ-

ent sets of templates on multiple processors.

• The maximum cross-correlation search task: produces the Spike

Sorting step output. It extracts the template ID , which is the in-

dex of the template with the highest cross-correlation coeffi-

cient. This index is the only information that will be signalled

outside to the non-implantable controller for the final classifi-

cation of the movement intention.

The spike vs template cross-correlation tasks along with the max-

mum cross-correlation search task are referred, later on in this pa-

er, to a unique one identified as SS3 .

.4. Real-time constraints

As already stated, the sampling frequency considered during the

evelopment of the system is 12 kHz. To be functional, the system

as to comply with two real-time constraints:

a) the wavelet denoising, NEO calculation and spike extraction tasks

have to be repeated for each input sample;

b) the spike sorting has to be repeated for every spike. We assume

a maximum spike rate corresponding to one spike every 23

samples. This assumption is quite conservative, according to in-

formation obtained from in-vivo experiments. This means that,

in the worst case condition, nearly 522 spikes/s are present.

Such a number is largely higher than the one that could be

computed considering the typical firing rate of the motor neu-

rons and the typical number of such neurons recorded by the

same active site of an intraneural electrode.

. Target architectural template

.1. Macro-architectural template

We have considered a general template for heterogeneous MP-

oCs, depicted in Fig. 5 . The proposed system necessarily embeds

 host processor, in charge of interfacing the system with the ex-

ernal environment, performing the more “control-like” function-

lities and dispatching the samples to be processed to the other

rocessors in the system for “data crunching”. Such other proces-

ors are customized instances of an Application-Specific Instruction

et template. The features of the micro-architectural template will
e described more in detail in Section 5.2 . The processors are con-

ected using a multi-layer system bus and by a set of point-to-

oint FIFO connections. The FIFOs are two 32-bit words wide and

re used for signalling within the handshake needed to implement

he application level flow-control, as discussed in Section 6 .

Similar templates, exposing in general the same optimization

nobs to the designer, can be constructed using different indus-

rial and academic solutions available for the community, such as

26–30] . All these toolsets can generate simulation models, HDL

escription for implementation, and provide a re-targetable com-

iler that adapts compilation to the selected processor and system

onfiguration.

.2. Micro-architectural processor template

The processor IPs that are used as building blocks in the ar-

hitectural template are design-time configurable VLIW processors.

ach processor can be composed of parallel datapath slices (issue

lots) capable of executing a configurable set of operations. These

perations may be selected from a library, which can be enriched

y the designer to implement frequently used non-standard oper-

tions effectively exploitable by the target algorithm.

Each issue slot has a register file and a pass unit that can be

sed to move data from one register file to the other. The first is-

ue slot acts as a sequencer . It manages the program counter and a

tatus register to control the program flow.

Each processor has a program memory and a data memory

nd can access an arbitrary number of FIFO-based connections

hrough dedicated ports. Given these general assumptions, the

icro-architectural parameters that we explore are:

• set of operations inside each issue slot. The operations that

have been used in this work were selected from a stan-

dard list including arithmetic and logic, program flow manage-

ment, compare, shifting and memory access operations. Stan-

dard multiplication and multiply-and-accumulate operations

have also been exploited. However, to achieve better efficiency,

a custom instruction combining multiplication, shifting and ac-

cumulation was defined. Such instruction has been very use-

ful to implement convolutions of fixed point values, where the

multiplication result has to be shifted before accumulation to

avoid overflow. The partitioning of the operations between the

issue slots is tailored to improve the utilization factor, according

to the operation scheduling required by the execution of target

algorithm microcode.

• register file size

• memory size

• number of FIFO ports

. Reference programming model and communication

rimitives

The target algorithm is a typical streaming application. We can

peed up the execution implementing a software pipeline, exploit-

ng a model of computation (MoC) based on process networks, ba-

ically derived from Kahn Process Networks (KPN) [31] . Such MoC

s based on parallel tasks that communicate through FIFOs.

Each task has to be represented as an iteratively repeated func-

ional actor. At each iteration a task receives a given amount of

nput data, called token , from one (set of) FIFO(s); then, the task

laborates it (executing a compute function, which represents the

ctual computation workload of the parallel task) and writes the

utput to the downstream FIFOs.

Provided that enough buffering resources are instantiated be-

ween different processes, the elaboration step envisioned in each

rocess step can run in parallel on subsequent tokens, thus the

94 P. Meloni et al. / Journal of Systems Architecture 76 (2017) 89–101

Fig. 5. Architectural template overview. ASIP n shows also the internal micro-architecture of the ASIPs.

W

C

Table 1

Workload (expressed in clock cycles) associated with the computation and commu-

nication tasks mapped on each ASIP for different mapping configurations.

Config Host ASIP1 ASIP2 ASIP3

(cycles/sample) (cycles/spike) (cycles/spike) (cycles/spike)

Mapping 1 1.8K 25.67K 16.6K 33.28K

Mapping 2 1.8K 42.27K 33.28K -

Mapping 3 1.8K 75.55K - -

a

f

i

a

c

t

o

h

F

l

s

h

a

p

e

a

b

t

t

e

u

7

t

(

t

t

i

s

e

2

s

c

throughput is limited by the execution time of the slowest task

in the network. Performance can be pre-estimated using an ana-

lytical model of the dependence of the throughput on the node

workloads [32] . presents an approach for modelling the through-

put of a KPN network, by calculating the throughput τP i
of every

KPN process. Each process P i of the KPN can be annotated with a

workload number W P i
:

 P i = C P i + x · C R d + y · C W r ,

where C P i denotes the number of time units (i.e. clock cycles) re-

quired to execute the process function once, x and y denote how

many FIFOs are read and written per process firing, and C R d and

W r denote the communication costs. The throughput of each pro-

cess is, hence, τP i
=

1
W P i

. The overall KPN throughput is denoted by

τ out and is defined as the average number of tokens produced by

the network per time unit. Since the slowest process determines

the system throughput [32] , then τout = τP slowest
.

To find an effective mapping solution, the pipeline stages have

to be as balanced as possible. To be practically implemented, the

KPN nodes, theoretically communicating through unbounded FI-

FOs, have to use blocking read() and write() primitives.

In this work, we have implemented an efficient set of primi-

tives that exploits processor internal memories for data exchange

and uses FIFOs only for synchronization. This approach has two ad-

vantages:

• the communication is copy-free. Within each communication

channel between a producer and a consumer , the token data

structure is mapped at a memory address that corresponds to

the consumer local memory. This way, the token is directly pro-

duced in place and can be consumed without further transfers.

Exploiting ping-pong buffering production and consumption of

tokens can be overlapped [33] ;

• As the communication happens through software FIFOs imple-

mented in local memories, big token data structures can be ex-

changed, avoiding the instantiation of power and area-hungry

hardware FIFO structures.

7. Design space exploration results: single channel

In order to assess the exploitability of the MPSoC paradigm

in this application domain, we performed a design space explo-

ration. We considered some design points that feature different

clusterings of the application tasks on the processing elements,

implementing the algorithm on a single train of sample coming

from a single acquisition channel. For each clustering, a micro-
rchitectural DSE was performed in order to find a customized ISA

or each processor.

The latency related with the execution of the wavelet denois-

ng, NEO calculation and spike extraction tasks, when mapped on

 general purpose host processor, is known from [19] (about 1.8K

ycles). We decided to consider such latency acceptable, since the

arget constraint a) sets a minimum required working frequency

f about 22 MHz, thus we kept such three tasks grouped on the

ost. This means that in all the explored mappings, presented in

ig. 6 , the host executes the WD, NEO and SE tasks. Fig. 6 high-

ights also the different choices that have been explored with re-

pect to the clustering of the spike sorting tasks. Three solutions

ave been evaluated, hereafter referred as Mapping 1, Mapping 2

nd Mapping 3.

Table 1 shows the latency associated with the execution of each

ipeline stage in the chosen mappings. Figs. 7 , 8 and 9 show the

xecution traces obtained from the FPGA prototyping of the evalu-

ted system configurations. In such traces, for the ASIPs, the black

ars represent the time slots dedicated to task execution. All the

races are obtained stimulating the system with a worst case syn-

hetic input signal exposing the maximum spike rate (one spike

very 23 samples). Here follows the analysis of the chosen config-

rations.

.1. Mapping 1

As a first solution, we tried to exploit the maximum degree of

ask-level parallelism, instantiating one ASIP for each parallel task

see Mapping 1 in Fig. 6). In this way, it is possible to minimize

he latency and to customize the processor architecture for each

ask, in order to achieve maximum efficiency. The design results

n a solution with three ASIPs. As may be noticed by the corre-

ponding execution trace, the limiting pipeline stage is the process

xecuted by the host. Denoising and spike detection (considering

3 iterations, to be capable of decoding a spike composed of 23

amples) take about 42 K cycles. The minimum frequency is set by

onstraint a) , thus is about 22 MHz.

P. Meloni et al. / Journal of Systems Architecture 76 (2017) 89–101 95

Fig. 6. Adopted mapping choices.

Fig. 7. Execution traces associated to Mapping 1.

Fig. 8. Execution traces associated to Mapping 2.

Fig. 9. Execution traces associated to Mapping 3.

7

i

i

h

q

b

Fig. 10. Hardware resources required by the system configuration for the three

mappings, normalized with respect to mapping 3 .

7

r

A

o

f

8

8

t

O

o

i

A

s
.2. Mapping 2

Inthe second solution, we merged the two standardization steps

n one single ASIP (see Mapping 2 in Fig. 6). The host processor

s no longer the limiting node in the pipeline. The function with

ighest execution latency is the standardization. The minimum re-

uired clock frequency has thus to be fixed, to respect constraint

) , to about 23 MHz.
.3. Mapping 3

In the third solution, we merged the entire spike sorting, cor-

esponding to Phase III in the application task graph, in one single

SIP (see Mapping 3 in Fig. 6). The limiting pipeline stage is obvi-

usly executed by ASIP 1. To respect constraint b) , in this case the

requency has to be increased to about 40 MHz.

. Hardware architecture evaluation

.1. Evaluation on FPGA

Throughput optimization through parallelism allows reducing

he working frequency required to process the signal in real-time.

n the other hand, instantiating more processors on the die obvi-

usly costs in terms of area and power.

In Fig. 10 we show the hardware resources occupied by the

mplementation of the chosen system configurations on a Xilinx

rtix-7 FPGA. The target device is a XC7A35T-1CPG236C FPGA,

pecifically designed to reduce development costs (the FPGA price

96 P. Meloni et al. / Journal of Systems Architecture 76 (2017) 89–101

Table 2

Actual ASIP utilization (% of the total

pipeline cycles).

ASIP processor % of active cycles

Mapping 1 – ASIP1 62%

Mapping 1 – ASIP2 40%

Mapping 1 – ASIP3 80%

Mapping 2 – ASIP1 100%

Mapping 2 – ASIP2 79%

Mapping 3 – ASIP1 100%

Fig. 11. Power consumption of the system configuration for the three mappings.

Static and dynamic contributions to the overall power consumption is shown.

8

i

h

i

e

p

u

i

m

E

t

t

h

t

g

e

a

t

m

p

t

i

s

f

C

f

e

i

s

t

2

p

a

p

i

i

2

t

n

m

m

T
is around 40 USD) and power consumption, being realized on

TSMC’s 28 nm high performance, low power (HPL) process. This

makes the device a promising technology target for a wearable

implementation of the neural signal decoding system. It may be

noticed that, as it is logical to expect, the utilization of registers

and slices is more than doubled going from one to three ASIPs.

Moreover, even if the application code and data segments are par-

titioned between the ASIPs, the size of the memory modules that

have to be instantiated in the system also increases significantly.

Such increase is basically due to the overhead related to the data

memory space reserved for the communication tokens (using ping-

pong double buffering the application has to reserve space for two

token data structures for each communication channel) and to the

program memory space needed to store the communication rou-

tines and the write and read APIs.

Nevertheless, exploiting parallelism can also bring advantages

with respect to power and energy consumptions, for three main

reasons:

• Target working frequency is reduced, thus more relaxed imple-

mentation constraints can be used within the implementation

flow, prospectively leading to the use of more low power cells

in the design and to less power-hungry netlists.

• As may be noticed by the scheduling traces in Figs. 7 and 8 ,

the ASIPs are stalled during part of the pipeline cycle waiting

on blocked communication channels. Their power consumption

can be reduced or switched off when not active, with clock- or

even power-gating techniques. The actual percentage of activ-

ity for each processor in the different mappings is reported in

Table 2 .

• As presented in [19] , spikes may be very sparsely detected in

the input signal. Thus having the host processor taking care of

all the execution steps needed for spike detection enables the

ASIPs to be activated only when meaningful neural information

has to be decoded (around 10% of the time in physiologically

meaningful signals), further reducing their contribution to the

overall power consumption.

In order to provide an estimation of the actual power con-

sumption of the FPGA implementation of the system, in Fig. 11 we

present the activity-based estimation of the power consumption

for the three considered mappings. As may be noticed, due to the

reduction of the working frequency, both Mapping 1 and Mapping

2 dissipate less power than Mapping 3, even if the hardware ar-

chitecture corresponding to Mapping 3 uses fewer resources. How-

ever, Mapping 2 is the more power-efficient, thus the additional

parallelism exploited in Mapping 1 is not optimal from a power-

consumption point of view. The overall power consumption of the

computing system for Mapping 2, assuming a continuous (unre-

alistic) neural activity, is below 200 mW. Considering a standard

Li-Ion single cell battery (3.7 V, 2500 mAh capacity), such power

consumption corresponds to a battery lifetime of nearly 48 h, thus

ensuring a comfortable use of the device in real-life prostheses.
.2. Evaluation on ASIC 40 nm technology

To evaluate power consumption of the ASIPs in prospective ASIC

mplementation, we have used as reference technology a 40 nm

igh-VT industrial standard cell library. The power figures reported

n the following are obtained after post-routing simulation-based

xperiments. Within the power evaluation flow, as a first step, we

erformed physical synthesis, floorplanning and place and route

sing Cadence RTL-Compiler and Cadence Encounter. During the

mplementation flow, the floorplanning phase required specific

anual effort. We initially executed the floorplanning exploiting

ncounter’s dedicated utility. This required manual specification of

he directives for the floorplanning tool, describing the hierarchy in

he synthesized netlist and listing the modules for which the tool

as to define area region constraints (i.e. in the considered use case

he ASIP cores). We had later to manually refine the automatically

enerated floorplanning to remove overlapping violations.

After the floorplanning, we performed placement and routing,

nabling in-place optimization to fix the timing violations evalu-

ted in the post-floorplanning phase. The resulting netlist was used

o perform a simulation with Mentor Questasim, using the HDL

odels of the standard cells provided with the library. During the

ost-routing simulation, the program memories were loaded with

he actual code of the target application, thus the obtained switch-

ng activity represents the actual workload to be supported by the

ystem. Such an activity is extracted from the simulation in the

orm of a SAIF (or a VCD file) that can be given in input to the

adence tools to estimate power consumption.

An average power consumption of approximately 0.05 mW/MHz

or each ASIP was achieved in Mapping 1. This number refers to

ffective simulation periods, during which the ASIPs were active

n actual computation and not stalled on FIFO accesses. This re-

ult sets to 5 mW the upper bound for the power consumption of

he overall system (considering 4 processors running in parallel at

5 MHz). This level of power consumption makes the system im-

lementation prospectively implantable, since, if adequately pack-

ged, it complies with the constraint related to maximum peak

ower consumption (80 mW/cm

2) [34] , that has to be respected

n order to avoid organic tissues damages. Moreover, consider-

ng the capacity of commercial implantable batteries [35] (3.6 V,

00 mAh), the expected battery lifetime is around 150 h. The sys-

em can be clocked up to 200 MHz using the low-power tech-

ology node in the library, without timing violations. Therefore,

ulti-channel neural signal decoding can be prospectively imple-

ented, increasing the frequency to respect real-time constraints.

able 3 summarizes the prospective ASIC implementation features.

P. Meloni et al. / Journal of Systems Architecture 76 (2017) 89–101 97

Table 3

Summary of the hardware-related features of a prospective ASIC implementation of the neural decoding

system.

Maximum working frequency (High Vt technology node) 200 MHz

Power consumption of a single ASIP 0 .05 mW/MHz

Power consumption of a 4-processor system configuration (Mapping 1) 5 mW

Considered battery features 3 .7 V, 200 mAh capacity

Battery lifetime (active use) 150 h

Table 4

Computation latency reduction by means of instruction-level parallelization.

Number Latency Latency Latency Total

of issue slots SS1 SS2 SS3

One data memory

per issue slot

1 (1IS-IDMEM) 25672 16600 33278 75550

2 (2IS-2DMEM) 18031 10065 19724 47819

(−29.76%) (−39.37%) (−40.73%) (−36.70%)

4 (4IS-4DMEM) 16052 6561 13262 35874

(−37.47%) (−60.48%) (−60.15%) (−52.52%)

Single data memory

1 (1IS-1DMEM) 25672 16600 33278 75550

2 (2IS-1DMEM) 19706 10065 21298 51069

(−23.24%) (−39.37%) (−36.00%) (−32.40%)

4 (4IS-1DMEM) 18751 6913 21055 46719

(−26.96%) (−58.35%) (−36.73%) (−38.16%)

[20] (2 ISs) 33K 34K 34K 103K

[21] (1 IS) 32K 19K 76K 129K

9

m

c

t

e

I

s

p

v

t

i

B

a

r

p

M

s

c

s

t

t

d

s

A

h

(

I

p

t

a

s

u

p

n

Fig. 12. Parallelization scheme of SS1 task. Partitioning of the workload among four

issue slots (IS0, IS1, IS2 and IS3). The solid line represents the single iteration over

the considered issue slot, while the dotted one all the subsequent ones.

c

m

i

a

c

r

a

t

t

p

d

s

m

p

s

m

s

s

m

t

v

p
. Design exploration results: multi-channel

According to [21] , a multi-channel decoder could be imple-

ented instantiating multiple parallel datapaths, each one dedi-

ated to handle a subset of the recording channels.

In [21] such a solution has been tested, using an ASIC 40 nm

echnology library as a reference, even if considering slightly differ-

nt latency numbers, Mapping 3 has been used. Phase I and Phase

I are mapped on a host processor. In this paper, we compare that

olution with a different approach that exploits instruction-level

arallelism. We evaluate the effects on the execution latency pro-

ided by means of the instantiation of multiple issue slots inside

he ASIP micro architectural template, and the corresponding qual-

ty of implementation for both FPGA and ASIC target technology.

asically we exploit the VLIW approach to reduce latencies and,

s a consequence, the number of processors that are required to

espect real-time constraints. As a first trial, we consider a set of

rocessor configurations, in charge of executing, as envisioned in

apping 3, SS1, SS2 and SS3 . Considered configurations feature one

equencing issue slot and 1, 2 or 4 issue slots dedicated to data

runching, each one endowed with a private data memory. In a

econd experiment, we only provide one data memory, connected

o the first crunching issue slot. In Table 4 we report the computa-

ion latency of the application tasks associated with the use of the

ifferent configurations.

As may be noticed, with respect to the implementation pre-

ented in [20] , both standardization steps have been optimized.

 significant reduction of the execution latency of SS1 and SS2

as been achieved basically applying compilation-based techniques

inline functions and loop unrolling) and inserting inside the ASIP

SA an enhanced load-store unit that enables memory access and

ointer increment to happen simultaneously. Moreover, comparing

he numbers considered in this paper with those presented in [21] ,

gain there is a noticeable latency reduction. Readers should con-

ider that in [21] only ASIPs with one single issue slot have been

sed, while the micro-architectural template considered in this pa-

er is composed by two in its minimal configuration. Further sig-

ificant optimizations can be obtained, as shown in Table 4 , by in-
reasing the instruction level parallelism in ASIPs, especially when

oving from a single issue slot to two (36.70% improvement). This

s basically due to the possibility, in all tasks, to parallelize actual

rithmetic and logic operations with memory accesses. Further in-

rease in the number of issue slots results in more limited latency

eduction, that also require significant manual intervention to be

pplied in order to transform the code so that the parallelism in

he ASIP can be effectively exploited. More in detail:

• input data (detected spikes) must be adequately dispatched to

the different data memories (if available)

• instrumental data structures, such as array pointers, loop itera-

tors and accumulators must be replicated and distributed over

the different data memories

• compiler-based optimization must be limited, in order to im-

prove predictability of the instruction scheduling

As an example, in order to achieve an effective utilization of

he 4 issue slots, in Fig. 12 we show the strategy adopted to allow

arallel processing in task SS1 . We have modified the code so that

ifferent sections of input spike are processed by different issue

lots.

The most computation intensive part of the tasks calculates

ean and standard deviation values over 40 input samples. The

rocessing has to be repeated 40 times, over all the different sub-

ets of 40 samples within the 80 samples in the input token. After

anual modification, the workload is partitioned among the 4 is-

ue slots. For example issue slot IS1 performs the first 10 iterations

tarting from the section 0–39, as highlighted in the figure. Code

odification has required manual intervention, in Table 5 we show

hat the latency numbers obtained without adequate manual inter-

ention do not benefit from increased parallelism in the ASIP data-

ath. Finally, Table 4 shows that latency reduction can be achieved

98 P. Meloni et al. / Journal of Systems Architecture 76 (2017) 89–101

Table 5

Computation latency without manual intervention.

Number Latency Latency Latency Total

of issue slots SS1 SS2 SS3

2 24370 17042 22185 63597

4 24288 17041 21932 63261

Fig. 13. Working frequency required to respect real-time constraints for differ-

ent ASIP configurations. The light gray bars indicates required frequency below

200 MHz.

Fig. 14. Power consumption (peak, average and average with power gating) of dif-

ferent ASIP-based system configurations.

Table 6

ASIP population and working frequency in the explored system configurations .

Considered ASIP ASIPs ASIPs System working

architecture executing executing clock

WD and SD spike sorting frequency (MHz)

1IS-1DMEM 1 × single-IS 2 × 1IS-1DMEM 170

2IS-2DMEM 1 × single-IS 1 × 2IS-2DMEM 200

4IS-4DMEM 1 × single-IS 1 × 4IS-4DMEM 170

2IS-1DMEM 1 × single-IS 2 × 2IS-1DMEM 170

4IS-1DMEM 1 × single-IS 1 × 4IS-1DMEM 170

reference 1 × single-IS 3 × single-IS 196

Table 7

Features of the prospective implantable ASIC implementation of the

multi-channel neural decoding system. Battery features: 3.7 V,

200 mAh capacity.

Multi channel use-case

of channels 8

Average power consumption @ 200 MHz 31 .2 mW

Peak power consumption @ 200 MHz 32 .3 mW

Battery lifetime (active use) ∼ 24 h

i

p

c

o

l

t

b

a

i

s

s

d

o

b

T

c

s

a

s

n

s
without increasing the number of data memories, thus limiting the

cost related with the instantiation of multiple issue slots. Such a

solution, on the one hand clearly implies less latency benefits, but

on the other is affected by a slightly more limited area and power

consumption increase. Therefore it will allow a partial parallelism

exploitation in highly constraint power and area scenarios.

10. Hardware architecture evaluation: multi-channel

10.1. Evaluation on ASIC 40 nm

Once the latency associated with the computation tasks, corre-

sponding to different ASIP architectures, has been identified, it is

possible to evaluate hardware-related characteristics of prospective

system architectures integrating the ASIPs. To evaluate power con-

sumption of the different considered architectures we have used

the power evaluation flow described in Section 8.2 . As a first step

we have evaluated the possibility of using one single (VLIW) ASIP

to process all the decoder input channels. This poses a required

working frequency derived by the previously mentioned real-time

constraints. As may be noticed in Fig. 13 , only three configurations,

in light gray, can respect constraints when clocked at a frequency

lower than 200 MHz. This means that only in these cases, we can

implement the multi-channel decoder exploiting only one ASIP to

execute Phase III.

In all the other cases, two different ASIPs have to be used, each

one assigned with the workload related with 4 out of the 8 input

channels. The bar named as reference represents the configuration

presented in [21] , that needs three parallel datapaths to respect

real time constraints. Fig. 14 shows the power consumption of all

the considered ASIP configurations. The numbers reported in the

table account for the whole ASIP population inside the system, that

is summarized in Table 6 .

The most power-efficient configuration is the one with two IS

and two data memories, both with respect to peak and to aver-

age power consumption (average power consumption takes into

account that in the considered configuration the computation ter-

minates before the deadline posed by real-time constraint, so the

processor goes in the idle state for the remaining time, dissipat-
ng around 25% of the active power consumption [21]). The higher

ower efficiency of this ASIP with respect to more parallel pro-

essors is mainly due to the smaller width of its program mem-

ry. Increasing the number of issue slots, the instruction becomes

onger to accomodate the additional opcode and control fields, thus

he power dissipation of the program memory counterbalances the

enefits obtained with the increased parallelism. Fig. 14 shows

lso average power consumption when power-gating is applied to

dle cores. Also in this case, configurations with two crunching is-

ue slots are more power-efficient than the others for the con-

idered workload. This highlights the application- and technology-

ependent nature of the benefits achievable with the exploitation

f instruction-level parallelism.

The system architecture with minimal power consumption can

e used to build a device with the characteristics highlighted in

able 7 . If we consider continuous neural signal activity on all the

hannels, the system can work for around 24 h with the energy

upplied by an implantable battery.

It is worth to point out that the reported power consumption

ssumes an unrealistic spike rate and that at each iteration the

pike sorting task will have to be executed only for those chan-

els which have detected a spike. This may cause power con-

umption to be much lower than what is reported in Table 7 . The

P. Meloni et al. / Journal of Systems Architecture 76 (2017) 89–101 99

a

p

s

c

w

p

g

n

t

d

1

a

a

c

o

1

t

i

t

s

p

c

fi

t

a

a

a

t

e

t

p

p

a

m

t

m

A

t

s

t

t

t

R

[

[

[

[

[

[

[
pproach exploiting instruction-level parallelism presented in this

aper, if compared with the strategy used in [21] , where one very

imple processor is instantiated for each channel, improves worst-

ase power consumption figures but loses predictability, since the

orkload in a given iteration depends on the activity of multi-

le channels. The optimization of power consumption with power-

ating techniques is more difficult to implement when more chan-

els are clustered on one single processor, thus a more parti-

ioned approach may be preferable when shifting to more leakage-

ominated technology nodes.

0.2. Evaluation on FPGA

Building a convenient on-FPGA implementation of the decoding

lgorithm is not really feasible. Considering XC7A35T-1CPG236C as

 target FPGA device, the maximum working frequency of the ASIP

onfigurations on the target FPGA device is around 55 MHz, thus

nly two channels can be processed by the host processor.

1. Conclusion

In this work we have evaluated the MPSoC paradigm within

he development of power efficient neural signal decoders. Start-

ng from a state-of-the-art algorithm, as reference target applica-

ion, we have performed a comparison of different MPSoC-based

ystem configurations. Considered solutions feature a differently

artitioned application, executed on a custom heterogeneous ar-

hitecture, realized using instruction-level parallel ASIPs. We have

rstly studied the decoder considering a single channel use-case,

hen we have explored the use of multiple issue-slots in the ASIPs

s a method to implement a multi-channel use case. Considering

 prospective ASIC implementation on a 40 nm technology, evalu-

ted using post-synthesis power evaluation, we have demonstrated

hat the multi-channel implementation can guarantee peak and av-

rage power consumption savings. The estimated power consump-

ion for the system is around 32 mW (24 h lifetime of an im-

lantable battery) and is compliant with the constraints posed by a

rospective implantable neural decoding device. However, we have

lso shown that this multi-channel approach requires significant

anual intervention on the software application, thus posing for

he users the requirement of advanced skills in parallel program-

ing.

cknowledgments

The research leading to these results has received funding by

he Region of Sardinia in the ELoRA project (Fundamental Re-

earch Programme, L.R. 7/2007, grant agreement CRP-60544), by

he European Commission in the NEBIAS project (FP7, FET Proac-

ive, grant agreement 611687) and by the Italian Government in

he HANDBOT project (PRIN2010/11, prot. 2010YF2RY_003).

eferences

[1] M. Tombini , J. Rigosa , F. Zappasodi , C. Porcaro , L. Citi , J. Carpaneto , P. Rossini ,
S. Micera , Combined analysis of cortical (EEG) and nerve stump signals

improves robotic hand control, Neurorehabil. Neural. Repair. 26 (3) (2012)
275–281 .

[2] M. Lewicki , A review of methods for spike sorting: the detection and classi-

fication of neural action potentials, Netw. Comput. Neural Syst. 9 (4) (1998)
53–78 .

[3] A. Diedrich , W. Charoensuk , R. Brychta , A. Ertl , R. Shiavi , Analysis of raw mi-
croneurographic recordings based on wavelet de-noising technique and classi-

fication algorithm: wavelet analysis in microneurography, IEEE Trans. Biomedl
Eng. 50 (1) (2003) 41–50 .

[4] R. Normann , A. Branner , A multichannel, neural interface for the peripheral
nervous system, in: Systems, Man, and Cybernetics, 1999. IEEE SMC ’99 Con-

ference Proceedings, 4, 1999, pp. 370–375 .
[5] L. Citi , J. Carpaneto , K. Yoshida , K.-P. Hoffmann , K.P. Koch , P. Dario , S. Micera ,
On the use of wavelet denoising and spike sorting techniques to process

electroneurographic signals recorded using intraneural electrodes, J. Neurosci.
Methods 172 (2008) 294–302 .

[6] P.M. Rossini , S. Micera , A. Benvenuto , J. Carpaneto , G. Cavallo , L. Citi , C. Cipri-
ani , L. Denaro , V. Denaro , G.D. Pino , et al. , Double nerve intraneural interface

implant on a human amputee for robotic hand control, Clin. Neurophysiol. 121
(5) (2010) 777–783 .

[7] F. Zhang, M. Aghagolzadeh, K. Oweiss, A fully implantable, programmable and

multimodal neuroprocessor for wireless, cortically controlled brain-machine
interface applications, J. Signal Process. Syst. 69 (3) (2012) 351–361, doi: 10.

1007/s11265-012-0670-x .
[8] B. Yu, T. Mak, X. Li, F. Xia, A. Yakovlev, Y. Sun, C.-S. Poon, Real-time fpga-based

multichannel spike sorting using hebbian eigenfilters, Emerg. Sel. Top. Circuits
Syst., IEEE J. 1 (4) (2011) 502–515, doi: 10.1109/JETCAS.2012.2183430 .

[9] T.-C. Chen, W. Liu, L.-G. Chen, 128-channel spike sorting processor with a

parallel-folding structure in 90nm process, in: Circuits and Systems, 2009.
ISCAS 2009. IEEE International Symposium on, 2009, pp. 1253–1256, doi: 10.

1109/ISCAS.2009.5117990 .
[10] Y. Perelman , R. Ginosar , An integrated system for multichannel neuronal

recording with spike/lfp separation, integrated a/d conversion and threshold
detection, Biomed. Eng., IEEE Trans. 54 (1) (2007) 130–137 .

[11] Z.S. Zumsteg , C. Kemere , S. O’Driscoll , G. Santhanam , R.E. Ahmed , K.V. Shenoy ,

T.H. Meng , Power feasibility of implantable digital spike sorting circuits for
neural prosthetic systems, Neural Syst. Rehabil. Eng., IEEE Trans. 13 (3) (2005)

272–279 .
[12] D. Chen , L. Wang , G. Ouyang , X. Li , Massively parallel neural signal processing

on a many-core platform, Comput. Sci. Eng. 13 (6) (2011) 42–51 .
[13] S. Gibson , J.W. Judy , D. Markovi ́c , An fpga-based platform for accelerated of-

fline spike sorting, J. Neurosci. Methods 215 (1) (2013) 1–11 .

[14] V. Karkare, S. Gibson, D. Markovic, A 130- μw, 64-channel neural spike-sorting
dsp chip, Solid-State Circuits, IEEE J. 46 (5) (2011) 1214–1222, doi: 10.1109/JSSC.

2011.2116410 .
[15] M. Montani , L. De Marchi , A. Marcianesi , N. Speciale , Comparison of a pro-

grammable dsp and fpga implementation for a wavelet-based denoising algo-
rithm, in: Circuits and Systems, 2003 IEEE 46th Midwest Symposium on, 2,

IEEE, 2003, pp. 602–605 .

[16] S. Gibson , J.W. Judy , D. Markovic , Technology-aware algorithm design for neu-
ral spike detection, feature extraction, and dimensionality reduction, Neural

Syst. Rehabil. Eng., IEEE Trans. 18 (5) (2010) 469–478 .
[17] N. Carta , C. Sau , F. Palumbo , D. Pani , L. Raffo , A coarse-grained reconfigurable

wavelet denoiser exploiting the multi-dataflow composer tool, in: 2013 Con-
ference on Design and Architectures for Signal and Image Processing, Cagliari,

Italy, October 8–10, 2013, 2013a, pp. 141–148 .

[18] N. Carta, C. Sau, D. Pani, F. Palumbo, L. Raffo, A coarse-grained reconfigurable
approach for low-power spike sorting architectures, in: Neural Engineering

(NER), 2013 6th International IEEE/EMBS Conference on, 2013b, pp. 439–442,
doi: 10.1109/NER.2013.6695966 .

[19] N. Carta, P. Meloni, G. Tuveri, D. Pani, L. Raffo, A custom mpsoc architecture
with integrated power management for real-time neural signal decoding, IEEE

J. Emerg. Sel. Top. Circuits Syst. 4 (2) (2014) 230–241, doi: 10.1109/JETCAS.2014.
2315881 .

20] P. Meloni, G. Tuveri, D. Pani, L. Raffo, F. Palumbo, Exploring custom hetero-

geneous mpsocs for real-time neural signal decoding, in: E.E.E. Chips, S. de-
sign Initiative (Eds.), Design and Architectures for Signal and Image Processing

(DASIP), 2015 Conference on, DASIP, ECSI – European Electronic Chips and Sys-
tems design Initiative, 2015, pp. 1–8, doi: 10.1109/DASIP.2015.7367243 .

[21] P. Meloni , C. Rubattu , G. Tuveri , F. Palumbo , D. Pani , L. Raffo , MPSoCs for real–
time neural signal decoding: a low-power ASIP-based implementation, Micro-

process. Microsyst. (2016) .

22] D. Purves , G. Augustine , D.e.a. Fitzpatrick , Neuroscience, 2nd edition, Sinauer
Associates, Sunderland (MA), 2001 .

23] M. Djilas , C. Azevedo-Coste , D. Guiraud , K. Yoshida , Spike sorting of mus-
cle spindle afferent nerve activity recorded with thin-film intrafascicular elec-

trodes, Comput. Intell. Neurosci. 2010 (2010) 13 . Article ID 836346
24] A. Kundu , K. Harreby , K. Yoshida , S.T. Boretius , W.T. Jensen , Stimulation selec-

tivity of the “thin-film longitudinal intrafascicular electrode” (tflife) and the

“transverse intrafascicular multi-channel electrode” (time) in the large nerve
animal model, Neural Syst. Rehabil. Eng., IEEE Trans. 22 (2) (2014) 400–410 .

25] D. Pani, F. Usai, L. Citi, L. Raffo, Real-time processing of tflife neural signals on
embedded dsp platforms: a case study, in: Neural Engineering (NER), 2011 5th

International IEEE/EMBS Conference on, 2011, pp. 44–47, doi: 10.1109/NER.2011.
5910485 .

26] L. Jozwiak, M. Lindwer, R. Corvino, P. Meloni, L. Micconi, J. Madsen, E. Diken,

D. Gangadharan, R. Jordans, S. Pomata, P. Pop, G. Tuveri, L. Raffo, G. No-
tarangelo, Asam: automatic architecture synthesis and application mapping,

Microprocess. Microsyst. 37 (8, Part C) (2013) 1002–1019. http://dx.doi.org/
10.1016/j.micpro.2013.08.006 . Special Issue on European Projects in Embedded

System Design: {EPESD2012}
[27] Synopsys Inc., Enabling the Design of Multicore SoCs with Application-Specific

Processors, [Online]. Available: http://www.synopsys.com/IP/ProcessorIP/asip/

Pages/default.aspx .
28] Cadence Design Systems Inc., Tensilica Customizable Processor IP. [Online].

Available: http://ip.cadence.com/ipportfolio/tensilica-ip

http://dx.doi.org/10.13039/501100000780
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0001
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0001
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0001
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0001
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0001
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0001
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0001
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0001
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0001
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0002
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0002
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0003
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0003
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0003
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0003
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0003
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0003
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0004
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0004
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0004
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0005
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0005
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0005
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0005
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0005
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0005
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0005
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0005
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0006
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0006
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0006
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0006
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0006
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0006
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0006
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0006
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0006
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0006
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0006
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0006
http://dx.doi.org/10.1007/s11265-012-0670-x
http://dx.doi.org/10.1109/JETCAS.2012.2183430
http://dx.doi.org/10.1109/ISCAS.2009.5117990
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0010
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0010
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0010
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0011
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0011
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0011
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0011
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0011
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0011
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0011
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0011
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0012
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0012
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0012
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0012
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0012
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0013
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0013
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0013
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0013
http://dx.doi.org/10.1109/JSSC.2011.2116410
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0015
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0015
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0015
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0015
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0015
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0016
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0016
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0016
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0016
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0017
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0017
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0017
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0017
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0017
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0017
http://dx.doi.org/10.1109/NER.2013.6695966
http://dx.doi.org/10.1109/JETCAS.2014.2315881
http://dx.doi.org/10.1109/DASIP.2015.7367243
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0021
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0021
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0021
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0021
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0021
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0021
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0021
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0022
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0022
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0022
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0022
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0023
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0023
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0023
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0023
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0023
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0023
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0024
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0024
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0024
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0024
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0024
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0024
http://dx.doi.org/10.1109/NER.2011.5910485
http://dx.doi.org/10.1016/j.micpro.2013.08.006
http://www.synopsys.com/IP/ProcessorIP/asip/Pages/default.aspx
http://ip.cadence.com/ipportfolio/tensilica-ip

100 P. Meloni et al. / Journal of Systems Architecture 76 (2017) 89–101

[

[29] O. Esko, P. Jääskeläinen, P. Huerta, C.S. de La Lama, J. Takala, J.I. Martinez, Cus-
tomized exposed datapath soft-core design flow with compiler support, in:

Proceedings of the 2010 International Conference on Field Programmable Logic
and Applications, in: FPL ’10, IEEE Computer Society, Washington, DC, USA,

2010, pp. 217–222, doi: 10.1109/FPL.2010.51 .
[30] O. Derin, E. Cannella, G. Tuveri, P. Meloni, T. Stefanov, L. Fiorin, L. Raffo,

M. Sami, A system-level approach to adaptivity and fault-tolerance in noc-
based mpsocs: the madness project, Microprocess. Microsyst. 37 (6–7) (2013)

515–529, doi: 10.1016/j.micpro.2013.07.007 .

[31] G. Kahn , The semantics of a simple language for parallel programming, in:
J.L. Rosenfeld (Ed.), Information processing, North Holland, Amsterdam, Stock-

holm, Sweden, 1974, pp. 471–475 .
32] S. Meijer , H. Nikolov , T. Stefanov , Throughput modeling to evaluate process
merging transformations in polyhedral process networks, in: Design, Automa-

tion Test in Europe Conference Exhibition (DATE), 2010, 2010, pp. 747–752 .
[33] T. Kluter, P. Brisk, E. Charbon, P. Ienne, MPSoC Design Using Application-

Specific Architecturally Visible Communication, Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 183–197. 10.1007/978-3-540-92990-1_15

[34] T.M. Seese , H. Harasaki , G.M. Saidel , C.R. Davies , Characterization of tissue mor-
phology, angiogenesis, and temperature in the adaptive response of muscle tis-

sue to chronic heating., Lab. Invest. 78 (12) (1998) 1553–1562 .

[35] Q. LLC, Ql020 0i-a, (http://www.quallion.com/new-pdf/QL020 0IA.pdf). Original
document from Quallion LLC.

http://dx.doi.org/10.1109/FPL.2010.51
http://dx.doi.org/10.1016/j.micpro.2013.07.007
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0029
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0029
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0030
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0030
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0030
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0030
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0031
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0031
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0031
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0031
http://refhub.elsevier.com/S1383-7621(16)30204-1/sbref0031
http://www.quallion.com/new-pdf/QL0200IA.pdf

P. Meloni et al. / Journal of Systems Architecture 76 (2017) 89–101 101

artment of Electrical and Electronic Engineering (DIEE) in the University of Cagliari. In

g and Computer Science, presenting the thesis ”Design and optimization techniques for
is mainly focused on the development of advanced digital systems, with special emphasis

hitectures. He is author of a significant record of international research papers and tutor

c Engineering. He is teaching the course of Embedded Systems at University of Cagliari
 work-package leader in the research projects ASAM (http://www.asam-project.org) and

lectronic Engineering from University of Cagliari, Italy, in 2011 and 2015 respectively. He

partment of Electrical and Electronic Engineering of University of Cagliari, as a research
 design in bio-medical applications.

lectronic Engineering from University of Cagliari, Italy, in 2006 and 2009 respectively. He

partment of Electrical and Electronic Engineering of University of Cagliari, as a Ph.D. stu-
ting systems, system adaptivity in embedded platforms, and FPGA-based multiprocessor

a cum laude) in electronic engineering and the Ph.D. degree in electronic and computer
 in 2002 and 2006, respectively. He is nontenure Assistant Professor in Biomedical Engi-

ineering, University of Cagliari, Cagliari, Italy, since 2011. Current main research topics are

tem signals for neuroprostheses, real-time noninvasive fetal ECG extraction, bioinspired
essing, telemedicine systems. He is an author of more than 40 international publications.

s committee of UNINFO. He is PI of the Regional Project L.R.7/2007 “ELoRAûLow-power
nd in involved in many national and European Projects in the field of neuroengineering.

ollaboration Technologies and Systems in Healthcare and Biomedical Fields.

ude) in 1989, Ph.D. in Electronics and Computer Science in 1994, University of Genova,
and Electronic Engineering of the University of Cagliari, Italy. He is a teacher of electronics

design of digital/analog devices and systems. In this field he has authored more than 80
inator of EU, Italian Research Ministry, Italian Space Agency, industrial projects.

 PolComIng Department of the University of Sassari, within the Information Engineering

eering in 2005 at the University of Cagliari, the Master Advanced in Embedded System

titute of the University of Lugano and the Ph.D. in Electronic at the University of Cagliari.
esign and development of code generation tools for advanced reconfigurable hardware

g and dataflow-based tools she has received a Best Paper Award at the Conference on
2011 for her work entitled “The Multi-Dataflow Composer tool: A runtime reconfigurable
Paolo Meloni is currently assistant professor at the Dep

October 2007 he received a Ph.D. in Electronic Engineerin
VLSI network on chip architectures.” His research activity

on the application-driven design of multi-core on-chip arc

of many bachelor and master students’thesis in Electroni
and is currently part of the technical board and acting as

MADNESS (http://www.madnessproject.org).

Claudio Rubattu received the B.Sc. and M.Sc. degrees in E

is part of EOLAB since June 2015, when he joined the De
assistant. His research interests include embedded system

Giuseppe Tuveri received the B.Sc. and M.Sc. degrees in E

is part of EOLAB since March 2010, when he joined the De
dent. His main research interests include embedded opera

prototyping.

Danilo Pani received the university degree (Laurea, magn
engineering from the University of Cagliari, Cagliari, Italy,

neering at the Department of Electrical and Electronic Eng

embedded real-time processing of peripheral nervous sys
integrated architectures for parallel biomedical signal proc

Dr. Pani is a member of the national Medical Informatic
realtime processing of neural signals for prosthetic aids” a

He is co-Chair of the CoHeB International Workshop on C

Luigi Raffo (M.Sc. Electronic Engineering (magna cum la
Italy) is full professor of Electronics at the Dept. Electrical

and system design courses. His main research field is the
international publications, and patents. He has been coord

Francesca Palumbo is currently an assistant professor at

unit. She received her “laurea degree” in Electronic Engin

Design in 2006 at the Advanced Learning and Research Ins
Her research focus is related to reconfigurable system d

architectures. In the field of dataflow-based programmin
Design and Architectures for Signal and Image Processing

HDL platform composer”.

http://www.asam-project.org
http://www.madnessproject.org

	Real-Time neural signal decoding on heterogeneous MPSocs based on VLIW ASIPs
	1 Introduction
	2 Related works
	3 General application and design strategy overview
	4 Target application and constraints
	4.1 Phase I - Wavelet Denoising
	4.2 Phase II - Spike Detection
	4.3 Phase III - Spike Sorting
	4.4 Real-time constraints

	5 Target architectural template
	5.1 Macro-architectural template
	5.2 Micro-architectural processor template

	6 Reference programming model and communication primitives
	7 Design space exploration results: single channel
	7.1 Mapping 1
	7.2 Mapping 2
	7.3 Mapping 3

	8 Hardware architecture evaluation
	8.1 Evaluation on FPGA
	8.2 Evaluation on ASIC 40 nm technology

	9 Design exploration results: multi-channel
	10 Hardware architecture evaluation: multi-channel
	10.1 Evaluation on ASIC 40 nm
	10.2 Evaluation on FPGA

	11 Conclusion
	 Acknowledgments
	 References

