5,815 research outputs found

    Beyond Gravitoelectromagnetism: Critical Speed in Gravitational Motion

    Get PDF
    A null ray approaching a distant astronomical source appears to slow down, while a massive particle speeds up in accordance with Newtonian gravitation. The integration of these apparently incompatible aspects of motion in general relativity is due to the existence of a critical speed. Dynamics of particles moving faster than the critical speed could then be contrary to Newtonian expectations. Working within the framework of gravitoelectromagnetism, the implications of the existence of a critical speed are explored. The results are expected to be significant for high energy astrophysics.Comment: 13 pages, to appear in the Special December 2005 Issue of Int. J. Mod. Phys.

    Secular interactions between inclined planets and a gaseous disk

    Get PDF
    In a planetary system, a secular particle resonance occurs at a location where the precession rate of a test particle (e.g. an asteroid) matches the frequency of one of the precessional modes of the planetary system. We investigate the secular interactions of a system of mutually inclined planets with a gaseous protostellar disk that may contain a secular nodal particle resonance. We determine the normal modes of some mutually inclined planet-disk systems. The planets and disk interact gravitationally, and the disk is internally subject to the effects of gas pressure, self-gravity, and turbulent viscosity. The behavior of the disk at a secular resonance is radically different from that of a particle, owing mainly to the effects of gas pressure. The resonance is typically broadened by gas pressure to the extent that global effects, including large-scale warps, dominate. The standard resonant torque formula is invalid in this regime. Secular interactions cause a decay of the inclination at a rate that depends on the disk properties, including its mass, turbulent viscosity, and sound speed. For a Jupiter-mass planet embedded within a minimum-mass solar nebula having typical parameters, dissipation within the disk is sufficient to stabilize the system against tilt growth caused by mean-motion resonances.Comment: 30 pages, 6 figures, to be published in The Astrophysical Journa

    Ultra--cold gases and the detection of the Earth's rotation: Bogoliubov space and gravitomagnetism

    Full text link
    The present work analyzes the consequences of the gravitomagnetic effect of the Earth upon a bosonic gas in which the corresponding atoms have a non--vanishing orbital angular momentum. Concerning the ground state of the Bogoliubov space of this system we deduce the consequences, on the pressure and on the speed of sound, of the gravitomagnetic effect. We prove that the effect on a single atom is very small, but we also show that for some thermodynamical properties the consequences scale as a non--trivial function of the number of particles.Comment: 4 page

    Weber-like interactions and energy conservation

    Get PDF
    Velocity dependent forces varying as k(r^/r)(1μr˙2+γrr¨)k(\hat{r}/r)(1 - \mu \dot{r}^2 + \gamma r \ddot{r}) (such as Weber force), here called Weber-like forces, are examined from the point of view of energy conservation and it is proved that they are conservative if and only if γ=2μ\gamma=2\mu. As a consequence, it is shown that gravitational theories employing Weber-like forces cannot be conservative and also yield both the precession of the perihelion of Mercury as well as the gravitational deflection of light.Comment: latex, 11 pages, no figure

    The DICE calibration project: design, characterization, and first results

    Full text link
    We describe the design, operation, and first results of a photometric calibration project, called DICE (Direct Illumination Calibration Experiment), aiming at achieving precise instrumental calibration of optical telescopes. The heart of DICE is an illumination device composed of 24 narrow-spectrum, high-intensity, light-emitting diodes (LED) chosen to cover the ultraviolet-to-near-infrared spectral range. It implements a point-like source placed at a finite distance from the telescope entrance pupil, yielding a flat field illumination that covers the entire field of view of the imager. The purpose of this system is to perform a lightweight routine monitoring of the imager passbands with a precision better than 5 per-mil on the relative passband normalisations and about 3{\AA} on the filter cutoff positions. The light source is calibrated on a spectrophotometric bench. As our fundamental metrology standard, we use a photodiode calibrated at NIST. The radiant intensity of each beam is mapped, and spectra are measured for each LED. All measurements are conducted at temperatures ranging from 0{\deg}C to 25{\deg}C in order to study the temperature dependence of the system. The photometric and spectroscopic measurements are combined into a model that predicts the spectral intensity of the source as a function of temperature. We find that the calibration beams are stable at the 10410^{-4} level -- after taking the slight temperature dependence of the LED emission properties into account. We show that the spectral intensity of the source can be characterised with a precision of 3{\AA} in wavelength. In flux, we reach an accuracy of about 0.2-0.5% depending on how we understand the off-diagonal terms of the error budget affecting the calibration of the NIST photodiode. With a routine 60-mn calibration program, the apparatus is able to constrain the passbands at the targeted precision levels.Comment: 25 pages, 27 figures, accepted for publication in A&

    Photon deflection and precession of the periastron in terms of spatial gravitational fields

    Full text link
    We show that a Maxwell-like system of equations for spatial gravitational fields g\bf g and B\bf B (latter being the analogy of a magnetic field), modified to include an extra term for the B\bf B field in the expression for force, leads to the correct values for the photon deflection angle and for the precession of the periastron

    Preliminary results for RR Lyrae stars and Classical Cepheids from the Vista Magellanic Cloud (VMC) Survey

    Get PDF
    The Vista Magellanic Cloud (VMC, PI M.R. Cioni) survey is collecting KSK_S-band time series photometry of the system formed by the two Magellanic Clouds (MC) and the "bridge" that connects them. These data are used to build KSK_S-band light curves of the MC RR Lyrae stars and Classical Cepheids and determine absolute distances and the 3D geometry of the whole system using the KK-band period luminosity (PLKSPLK_S), the period - luminosity - color (PLCPLC) and the Wesenhiet relations applicable to these types of variables. As an example of the survey potential we present results from the VMC observations of two fields centered respectively on the South Ecliptic Pole and the 30 Doradus star forming region of the Large Magellanic Cloud. The VMC KSK_S-band light curves of the RR Lyrae stars in these two regions have very good photometric quality with typical errors for the individual data points in the range of \sim 0.02 to 0.05 mag. The Cepheids have excellent light curves (typical errors of \sim 0.01 mag). The average KSK_S magnitudes derived for both types of variables were used to derive PLKSPLK_S relations that are in general good agreement within the errors with the literature data, and show a smaller scatter than previous studies.Comment: 7 pages, 6 figure. Accepted for publication in Astrophysics and Space Science. Following a presentation at the conference "The Fundamental Cosmic Distance Scale: State of the Art and the Gaia Perspective", Naples, May 201
    corecore